These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38780843)
1. Interactions between plants and bacterial communities for phytoremediation of petroleum-contaminated soil. Zhong M; Yang C; Su L; Sun Z; Xu J; Zhang J; Li Q; Hao Y; Ma H; Chen H; Chen J; Chen S Environ Sci Pollut Res Int; 2024 May; 31(25):37564-37573. PubMed ID: 38780843 [TBL] [Abstract][Full Text] [Related]
2. UHPM dominance in driving the formation of petroleum-contaminated soil aggregate, the bacterial communities succession, and phytoremediation. Li X; Wu Q; Wang Y; Li G; Su Y J Hazard Mater; 2024 Jun; 471():134322. PubMed ID: 38636238 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Peng S; Zhou Q; Cai Z; Zhang Z J Hazard Mater; 2009 Sep; 168(2-3):1490-6. PubMed ID: 19346069 [TBL] [Abstract][Full Text] [Related]
4. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil]. Jiao HH; Cui BJ; Wu SH; Bai ZH; Huang ZB Huan Jing Ke Xue; 2015 Sep; 36(9):3471-8. PubMed ID: 26717712 [TBL] [Abstract][Full Text] [Related]
5. Responses and roles of roots, microbes, and degrading genes in rhizosphere during phytoremediation of petroleum hydrocarbons contaminated soil. Cheng L; Zhou Q; Yu B Int J Phytoremediation; 2019; 21(12):1161-1169. PubMed ID: 31099253 [TBL] [Abstract][Full Text] [Related]
6. Improved chickpea growth, physiology, nutrient assimilation and rhizoremediation of hydrocarbons by bacterial consortia. Ali MH; Khan MI; Amjad F; Khan N; Seleiman MF BMC Plant Biol; 2024 Oct; 24(1):984. PubMed ID: 39425086 [TBL] [Abstract][Full Text] [Related]
7. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. Wang A; Fu W; Feng Y; Liu Z; Song D J Hazard Mater; 2022 May; 429():128396. PubMed ID: 35236043 [TBL] [Abstract][Full Text] [Related]
8. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Fatima K; Afzal M; Imran A; Khan QM Bull Environ Contam Toxicol; 2015 Mar; 94(3):314-20. PubMed ID: 25661008 [TBL] [Abstract][Full Text] [Related]
10. Bacterial succession in oil-contaminated soil under phytoremediation with poplars. Lopez-Echartea E; Strejcek M; Mukherjee S; Uhlik O; Yrjälä K Chemosphere; 2020 Mar; 243():125242. PubMed ID: 31995861 [TBL] [Abstract][Full Text] [Related]
11. Coupling biostimulation and phytoremediation for the restoration of petroleum hydrocarbon-contaminated soil. Li J; Ma N; Hao B; Qin F; Zhang X Int J Phytoremediation; 2023; 25(6):706-716. PubMed ID: 35900160 [TBL] [Abstract][Full Text] [Related]
12. Soil Characteristics Constrain the Response of Microbial Communities and Associated Hydrocarbon Degradation Genes during Phytoremediation. Correa-García S; Rheault K; Tremblay J; Séguin A; Yergeau E Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33097512 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant. Jones RK; Sun WH; Tang CS; Robert FM Environ Sci Pollut Res Int; 2004; 11(5):340-6. PubMed ID: 15506638 [TBL] [Abstract][Full Text] [Related]
14. Distribution Characteristics of Bacterial Communities and Hydrocarbon Degradation Dynamics During the Remediation of Petroleum-Contaminated Soil by Enhancing Moisture Content. Liu H; Gao H; Wu M; Ma C; Wu J; Ye X Microb Ecol; 2020 Jul; 80(1):202-211. PubMed ID: 31955225 [TBL] [Abstract][Full Text] [Related]
15. SIP-metagenomics reveals key drivers of rhizospheric Benzo[a]pyrene bioremediation via bioaugmentation with indigenous soil microbes. Zhao X; Cheng X; Cai X; Wang S; Li J; Dai Y; Jiang L; Luo C; Zhang G Environ Pollut; 2024 Nov; 360():124620. PubMed ID: 39067741 [TBL] [Abstract][Full Text] [Related]
16. Effects of different remediation treatments on crude oil contaminated saline soil. Gao YC; Guo SH; Wang JN; Li D; Wang H; Zeng DH Chemosphere; 2014 Dec; 117():486-93. PubMed ID: 25240723 [TBL] [Abstract][Full Text] [Related]
17. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Kirk JL; Klironomos JN; Lee H; Trevors JT Environ Pollut; 2005 Feb; 133(3):455-65. PubMed ID: 15519721 [TBL] [Abstract][Full Text] [Related]
18. Assessment of dynamic microbial community structure and rhizosphere interactions during bioaugmented phytoremediation of petroleum contaminated soil by a newly designed rhizobox system. Yang KM; Poolpak T; Pokethitiyook P; Kruatrachue M Int J Phytoremediation; 2022; 24(14):1505-1517. PubMed ID: 35266855 [TBL] [Abstract][Full Text] [Related]
19. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. Liu Q; Tang J; Liu X; Song B; Zhen M; Ashbolt NJ J Appl Microbiol; 2017 Oct; 123(4):875-885. PubMed ID: 28763134 [TBL] [Abstract][Full Text] [Related]