These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 38781207)

  • 21. Stress-related biomolecular condensates in plants.
    Solis-Miranda J; Chodasiewicz M; Skirycz A; Fernie AR; Moschou PN; Bozhkov PV; Gutierrez-Beltran E
    Plant Cell; 2023 Sep; 35(9):3187-3204. PubMed ID: 37162152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
    Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations.
    Sundaravadivelu Devarajan D; Wang J; Szała-Mendyk B; Rekhi S; Nikoubashman A; Kim YC; Mittal J
    Nat Commun; 2024 Mar; 15(1):1912. PubMed ID: 38429263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function.
    Campelo F; Lillo JV; von Blume J
    Biophys J; 2024 Jun; 123(12):1531-1541. PubMed ID: 38698644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shape recovery of deformed biomolecular droplets: Dependence on condensate viscoelasticity.
    Zhou HX
    J Chem Phys; 2021 Oct; 155(14):145102. PubMed ID: 34654286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response.
    Morishita K; Watanabe K; Naguro I; Ichijo H
    Cell Rep; 2023 Apr; 42(4):112315. PubMed ID: 37019112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomolecular condensates form spatially inhomogeneous network fluids.
    Dar F; Cohen SR; Mitrea DM; Phillips AH; Nagy G; Leite WC; Stanley CB; Choi JM; Kriwacki RW; Pappu RV
    Nat Commun; 2024 Apr; 15(1):3413. PubMed ID: 38649740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-Molecule Measurement of Protein Interaction Dynamics within Biomolecular Condensates.
    Yoshida SR; Chong S
    J Vis Exp; 2024 Jan; (203):. PubMed ID: 38251748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preserving condensate structure and composition by lowering sequence complexity.
    Sood A; Zhang B
    Biophys J; 2024 Jul; 123(13):1815-1826. PubMed ID: 38824391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the surface charge of condensates using microelectrophoresis.
    van Haren MHI; Visser BS; Spruijt E
    Nat Commun; 2024 Apr; 15(1):3564. PubMed ID: 38670952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface tension and viscosity of protein condensates quantified by micropipette aspiration.
    Wang H; Kelley FM; Milovanovic D; Schuster BS; Shi Z
    Biophys Rep (N Y); 2021 Sep; 1(1):. PubMed ID: 36247368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleation landscape of biomolecular condensates.
    Shimobayashi SF; Ronceray P; Sanders DW; Haataja MP; Brangwynne CP
    Nature; 2021 Nov; 599(7885):503-506. PubMed ID: 34552246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning the chemical grammar of biomolecular condensates.
    Kilgore HR; Young RA
    Nat Chem Biol; 2022 Dec; 18(12):1298-1306. PubMed ID: 35761089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges in Imaging Analyses of Biomolecular Condensates in Cells Infected with Influenza A Virus.
    Etibor TA; O'Riain A; Alenquer M; Diwo C; Vale-Costa S; Amorim MJ
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multidimensional Super-Resolution Microscopy Unveils Nanoscale Surface Aggregates in the Aging of FUS Condensates.
    He C; Wu CY; Li W; Xu K
    J Am Chem Soc; 2023 Nov; 145(44):24240-24248. PubMed ID: 37782826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biotin-avidin binding kinetics measured by single-molecule imaging.
    Wayment JR; Harris JM
    Anal Chem; 2009 Jan; 81(1):336-42. PubMed ID: 19117461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate.
    Wu YO; Bryant AT; Nelson NT; Madey AG; Fernandes GF; Goodson HV
    PLoS One; 2021; 16(12):e0260401. PubMed ID: 34890409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP-induced cross-linking of a biomolecular condensate.
    Coupe S; Fakhri N
    Biophys J; 2024 Jun; 123(11):1356-1366. PubMed ID: 37480229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Label-Free Techniques for Probing Biomolecular Condensates.
    Ibrahim KA; Naidu AS; Miljkovic H; Radenovic A; Yang W
    ACS Nano; 2024 Apr; 18(16):10738-10757. PubMed ID: 38609349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.