These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38781500)

  • 1. MoLPC2: improved prediction of large protein complex structures and stoichiometry using Monte Carlo Tree Search and AlphaFold2.
    Chim HY; Elofsson A
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38781500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search.
    Bryant P; Pozzati G; Zhu W; Shenoy A; Kundrotas P; Elofsson A
    Nat Commun; 2022 Oct; 13(1):6028. PubMed ID: 36224222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing effective energy functions for protein structure prediction through broadening attraction-basin and reverse Monte Carlo sampling.
    Wang C; Wei Y; Zhang H; Kong L; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):135. PubMed ID: 30925867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving protein structure prediction with model-based search.
    Brunette TJ; Brock O
    Bioinformatics; 2005 Jun; 21 Suppl 1():i66-74. PubMed ID: 15961500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CombFold: predicting structures of large protein assemblies using a combinatorial assembly algorithm and AlphaFold2.
    Shor B; Schneidman-Duhovny D
    Nat Methods; 2024 Mar; 21(3):477-487. PubMed ID: 38326495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions.
    Mortuza SM; Zheng W; Zhang C; Li Y; Pearce R; Zhang Y
    Nat Commun; 2021 Aug; 12(1):5011. PubMed ID: 34408149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative prediction of critical amino acid positions for protein folding.
    Thireou T; Atlamazoglou V; Papandreou NA; Lonquety M; Chomilier J; Eliopoulos E
    Protein Pept Lett; 2009; 16(11):1342-9. PubMed ID: 19508208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method.
    St-Pierre JF; Mousseau N
    Proteins; 2012 Jul; 80(7):1883-94. PubMed ID: 22488731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding small proteins via annealing stochastic approximation Monte Carlo.
    Cheon S; Liang F
    Biosystems; 2011 Sep; 105(3):243-9. PubMed ID: 21679746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gradient-directed Monte Carlo approach for protein design.
    Hu X; Hu H; Beratan DN; Yang W
    J Comput Chem; 2010 Aug; 31(11):2164-8. PubMed ID: 20186860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FoldPAthreader: predicting protein folding pathway using a novel folding force field model derived from known protein universe.
    Zhao K; Zhao P; Wang S; Xia Y; Zhang G
    Genome Biol; 2024 Jun; 25(1):152. PubMed ID: 38862984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of AlphaFold-Multimer prediction on multi-chain protein complexes.
    Zhu W; Shenoy A; Kundrotas P; Elofsson A
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37405868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding protein folding: small proteins in silico.
    Zimmermann O; Hansmann UH
    Biochim Biophys Acta; 2008 Jan; 1784(1):252-8. PubMed ID: 18036571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein structure prediction enhanced with evolutionary diversity: SPEED.
    DeBartolo J; Hocky G; Wilde M; Xu J; Freed KF; Sosnick TR
    Protein Sci; 2010 Mar; 19(3):520-34. PubMed ID: 20066664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MMpred: a distance-assisted multimodal conformation sampling for de novo protein structure prediction.
    Zhao KL; Liu J; Zhou XG; Su JZ; Zhang Y; Zhang GJ
    Bioinformatics; 2021 Dec; 37(23):4350-4356. PubMed ID: 34185079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking of protein molecular surfaces with evolutionary trace analysis.
    Kanamori E; Murakami Y; Tsuchiya Y; Standley DM; Nakamura H; Kinoshita K
    Proteins; 2007 Dec; 69(4):832-8. PubMed ID: 17803239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TASSER: an automated method for the prediction of protein tertiary structures in CASP6.
    Zhang Y; Arakaki AK; Skolnick J
    Proteins; 2005; 61 Suppl 7():91-98. PubMed ID: 16187349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of CASP6 structures using automated Robetta protocols.
    Chivian D; Kim DE; Malmström L; Schonbrun J; Rohl CA; Baker D
    Proteins; 2005; 61 Suppl 7():157-166. PubMed ID: 16187358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem.
    Shmygelska A; Hoos HH
    BMC Bioinformatics; 2005 Feb; 6():30. PubMed ID: 15710037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RCSB protein Data Bank: exploring protein 3D similarities via comprehensive structural alignments.
    Bittrich S; Segura J; Duarte JM; Burley SK; Rose Y
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38870521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.