These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 38781513)
1. From pixels to prognosis: unlocking the potential of deep learning in fibrotic lung disease imaging analysis. de la Orden Kett Morais SR; Felder FN; Walsh SLF Br J Radiol; 2024 Sep; 97(1161):1517-1525. PubMed ID: 38781513 [TBL] [Abstract][Full Text] [Related]
2. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Walsh SLF; Calandriello L; Silva M; Sverzellati N Lancet Respir Med; 2018 Nov; 6(11):837-845. PubMed ID: 30232049 [TBL] [Abstract][Full Text] [Related]
3. Multi-scale, domain knowledge-guided attention + random forest: a two-stage deep learning-based multi-scale guided attention models to diagnose idiopathic pulmonary fibrosis from computed tomography images. Yu W; Zhou H; Choi Y; Goldin JG; Teng P; Wong WK; McNitt-Gray MF; Brown MS; Kim GHJ Med Phys; 2023 Feb; 50(2):894-905. PubMed ID: 36254789 [TBL] [Abstract][Full Text] [Related]
4. Predicting Usual Interstitial Pneumonia Histopathology From Chest CT Imaging With Deep Learning. Bratt A; Williams JM; Liu G; Panda A; Patel PP; Walkoff L; Sykes AG; Tandon YK; Francois CJ; Blezek DJ; Larson NB; Erickson BJ; Yi ES; Moua T; Koo CW Chest; 2022 Oct; 162(4):815-823. PubMed ID: 35405110 [TBL] [Abstract][Full Text] [Related]
5. Novel Artificial Intelligence-based Technology for Chest Computed Tomography Analysis of Idiopathic Pulmonary Fibrosis. Handa T; Tanizawa K; Oguma T; Uozumi R; Watanabe K; Tanabe N; Niwamoto T; Shima H; Mori R; Nobashi TW; Sakamoto R; Kubo T; Kurosaki A; Kishi K; Nakamoto Y; Hirai T Ann Am Thorac Soc; 2022 Mar; 19(3):399-406. PubMed ID: 34410886 [No Abstract] [Full Text] [Related]
6. Densitometric and local histogram based analysis of computed tomography images in patients with idiopathic pulmonary fibrosis. Ash SY; Harmouche R; Vallejo DL; Villalba JA; Ostridge K; Gunville R; Come CE; Onieva Onieva J; Ross JC; Hunninghake GM; El-Chemaly SY; Doyle TJ; Nardelli P; Sanchez-Ferrero GV; Goldberg HJ; Rosas IO; San Jose Estepar R; Washko GR Respir Res; 2017 Mar; 18(1):45. PubMed ID: 28264721 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning-based Segmentation of Computed Tomography Scans Predicts Disease Progression and Mortality in Idiopathic Pulmonary Fibrosis. Thillai M; Oldham JM; Ruggiero A; Kanavati F; McLellan T; Saini G; Johnson SR; Ble FX; Azim A; Ostridge K; Platt A; Belvisi M; Maher TM; Molyneaux PL Am J Respir Crit Care Med; 2024 Aug; 210(4):465-472. PubMed ID: 38452227 [No Abstract] [Full Text] [Related]
8. The evolution of computer-based analysis of high-resolution CT of the chest in patients with IPF. Calandriello L; Walsh SL Br J Radiol; 2022 Apr; 95(1132):20200944. PubMed ID: 33881923 [TBL] [Abstract][Full Text] [Related]
9. Deep-Learning Reconstruction of High-Resolution CT Improves Interobserver Agreement for the Evaluation of Pulmonary Fibrosis. Hamada A; Yasaka K; Hatano S; Kurokawa M; Inui S; Kubo T; Watanabe Y; Abe O Can Assoc Radiol J; 2024 Aug; 75(3):542-548. PubMed ID: 38293802 [No Abstract] [Full Text] [Related]
10. Computer-Aided Diagnosis of Pulmonary Fibrosis Using Deep Learning and CT Images. Christe A; Peters AA; Drakopoulos D; Heverhagen JT; Geiser T; Stathopoulou T; Christodoulidis S; Anthimopoulos M; Mougiakakou SG; Ebner L Invest Radiol; 2019 Oct; 54(10):627-632. PubMed ID: 31483764 [TBL] [Abstract][Full Text] [Related]
11. Imaging research in fibrotic lung disease; applying deep learning to unsolved problems. Walsh SLF; Humphries SM; Wells AU; Brown KK Lancet Respir Med; 2020 Nov; 8(11):1144-1153. PubMed ID: 32109428 [TBL] [Abstract][Full Text] [Related]
12. Prognosis of pulmonary fibrosis presenting with a usual interstitial pneumonia pattern on computed tomography in patients with myeloperoxidase anti-neutrophil cytoplasmic antibody-related nephritis: a retrospective single-center study. Watanabe T; Minezawa T; Hasegawa M; Goto Y; Okamura T; Sakakibara Y; Niwa Y; Kato A; Hayashi M; Isogai S; Kondo M; Yamamoto N; Hashimoto N; Imaizumi K BMC Pulm Med; 2019 Nov; 19(1):194. PubMed ID: 31675941 [TBL] [Abstract][Full Text] [Related]
13. Prognostic value of deep learning-based fibrosis quantification on chest CT in idiopathic pulmonary fibrosis. Nam JG; Choi Y; Lee SM; Yoon SH; Goo JM; Kim H Eur Radiol; 2023 May; 33(5):3144-3155. PubMed ID: 36928568 [TBL] [Abstract][Full Text] [Related]
14. Deep learning in interstitial lung disease-how long until daily practice. Trusculescu AA; Manolescu D; Tudorache E; Oancea C Eur Radiol; 2020 Nov; 30(11):6285-6292. PubMed ID: 32537728 [TBL] [Abstract][Full Text] [Related]
15. Quantitative computed tomography and machine learning: recent data in fibrotic interstitial lung disease and potential role in pulmonary sarcoidosis. Wells AU; Walsh SLF Curr Opin Pulm Med; 2022 Sep; 28(5):492-497. PubMed ID: 35861463 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning-based Outcome Prediction in Progressive Fibrotic Lung Disease Using High-Resolution Computed Tomography. Walsh SLF; Mackintosh JA; Calandriello L; Silva M; Sverzellati N; Larici AR; Humphries SM; Lynch DA; Jo HE; Glaspole I; Grainge C; Goh N; Hopkins PMA; Moodley Y; Reynolds PN; Zappala C; Keir G; Cooper WA; Mahar AM; Ellis S; Wells AU; Corte TJ Am J Respir Crit Care Med; 2022 Oct; 206(7):883-891. PubMed ID: 35696341 [No Abstract] [Full Text] [Related]
17. Comparison of the quantitative CT imaging biomarkers of idiopathic pulmonary fibrosis at baseline and early change with an interval of 7 months. Kim HJ; Brown MS; Chong D; Gjertson DW; Lu P; Kim HJ; Coy H; Goldin JG Acad Radiol; 2015 Jan; 22(1):70-80. PubMed ID: 25262954 [TBL] [Abstract][Full Text] [Related]
18. Development and validation of a CT-based deep learning algorithm to augment non-invasive diagnosis of idiopathic pulmonary fibrosis. Maddali MV; Kalra A; Muelly M; Reicher JJ Respir Med; 2023; 219():107428. PubMed ID: 37838076 [TBL] [Abstract][Full Text] [Related]
19. Prediction of idiopathic pulmonary fibrosis progression using early quantitative changes on CT imaging for a short term of clinical 18-24-month follow-ups. Kim GHJ; Weigt SS; Belperio JA; Brown MS; Shi Y; Lai JH; Goldin JG Eur Radiol; 2020 Feb; 30(2):726-734. PubMed ID: 31451973 [TBL] [Abstract][Full Text] [Related]
20. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests. Nakagawa H; Nagatani Y; Takahashi M; Ogawa E; Tho NV; Ryujin Y; Nagao T; Nakano Y Eur J Radiol; 2016 Jan; 85(1):125-130. PubMed ID: 26724656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]