BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38781806)

  • 1. Role of inflammatory mediators in intracranial aneurysms: A review.
    Chen C; Tang F; Zhu M; Wang C; Zhou H; Zhang C; Feng Y
    Clin Neurol Neurosurg; 2024 Jul; 242():108329. PubMed ID: 38781806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of inflammation in the natural history of intracranial saccular aneurysms.
    Wang J; Wei L; Lu H; Zhu Y
    J Neurol Sci; 2021 May; 424():117294. PubMed ID: 33799211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNF-alpha-mediated inflammation in cerebral aneurysms: a potential link to growth and rupture.
    Jayaraman T; Paget A; Shin YS; Li X; Mayer J; Chaudhry H; Niimi Y; Silane M; Berenstein A
    Vasc Health Risk Manag; 2008; 4(4):805-17. PubMed ID: 19065997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammatory changes in the aneurysm wall: a review.
    Tulamo R; Frösen J; Hernesniemi J; Niemelä M
    J Neurointerv Surg; 2018 Jul; 10(Suppl 1):i58-i67. PubMed ID: 30037960
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Lai XL; Deng ZF; Zhu XG; Chen ZH
    Biosci Rep; 2019 Mar; 39(3):. PubMed ID: 30808715
    [No Abstract]   [Full Text] [Related]  

  • 6. Nonsteroidal Anti-Inflammatory Drugs: A Potential Pharmacological Treatment for Intracranial Aneurysm.
    Fisher CL; Demel SL
    Cerebrovasc Dis Extra; 2019; 9(1):31-45. PubMed ID: 31039577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic basis of intracranial aneurysm formation and rupture: clinical implications in the postgenomic era.
    Samuel N; Radovanovic I
    Neurosurg Focus; 2019 Jul; 47(1):E10. PubMed ID: 31261114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation.
    Aoki T; Fukuda M; Nishimura M; Nozaki K; Narumiya S
    Acta Neuropathol Commun; 2014 Mar; 2():34. PubMed ID: 24685329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative proteomics analysis of differentially expressed proteins in ruptured and unruptured cerebral aneurysms by iTRAQ.
    Jiang P; Wu J; Chen X; Ning B; Liu Q; Li Z; Li M; Yang F; Cao Y; Wang R; Wang S
    J Proteomics; 2018 Jun; 182():45-52. PubMed ID: 29729990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of single and multiple aneurysms with tobacco abuse: an @neurIST risk analysis.
    Schatlo B; Gautschi OP; Friedrich CM; Ebeling C; Jägersberg M; Kulcsár Z; Pereira VM; Schaller K; Bijlenga P
    Neurosurg Focus; 2019 Jul; 47(1):E9. PubMed ID: 31261132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size ratio correlates with intracranial aneurysm rupture status: a prospective study.
    Rahman M; Smietana J; Hauck E; Hoh B; Hopkins N; Siddiqui A; Levy EI; Meng H; Mocco J
    Stroke; 2010 May; 41(5):916-20. PubMed ID: 20378866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CNS-associated macrophages contribute to intracerebral aneurysm pathophysiology.
    Glavan M; Jelic A; Levard D; Frösen J; Keränen S; Franx BAA; Bras AR; Louet ER; Dénes Á; Merlini M; Vivien D; Rubio M
    Acta Neuropathol Commun; 2024 Mar; 12(1):43. PubMed ID: 38500201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamic Stress, Inflammation, and Intracranial Aneurysm Development and Rupture: A Systematic Review.
    Signorelli F; Sela S; Gesualdo L; Chevrel S; Tollet F; Pailler-Mattei C; Tacconi L; Turjman F; Vacca A; Schul DB
    World Neurosurg; 2018 Jul; 115():234-244. PubMed ID: 29709752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm Growth by Suppressing Macrophage Infiltration and Activation.
    Ikedo T; Minami M; Kataoka H; Hayashi K; Nagata M; Fujikawa R; Higuchi S; Yasui M; Aoki T; Fukuda M; Yokode M; Miyamoto S
    J Am Heart Assoc; 2017 Jun; 6(6):. PubMed ID: 28630262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concordance in Aneurysm Size at Time of Rupture in Familial Intracranial Aneurysms.
    Bourcier R; Lindgren A; Desal H; L'Allinec V; Januel AC; Koivisto T; Jääskeläinen JE; Slot EMH; Mensing L; Zuithoff NPA; Milot G; Algra A; Rinkel GJE; Ruigrok Y
    Stroke; 2019 Feb; 50(2):504-506. PubMed ID: 30602357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutrophils: Novel Contributors to Estrogen-Dependent Intracranial Aneurysm Rupture Via Neutrophil Extracellular Traps.
    Patel D; Dodd WS; Lucke-Wold B; Chowdhury MAB; Hosaka K; Hoh BL
    J Am Heart Assoc; 2023 Nov; 12(21):e029917. PubMed ID: 37889179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral Aneurysm and Interleukin-6: a Key Player in Aneurysm Generation and Rupture or Just One of the Multiple Factors?
    Monsour M; Croci DM; Grüter BE; Taussky P; Marbacher S; Agazzi S
    Transl Stroke Res; 2023 Oct; 14(5):631-639. PubMed ID: 36042111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biology of intracranial aneurysms: role of inflammation.
    Chalouhi N; Ali MS; Jabbour PM; Tjoumakaris SI; Gonzalez LF; Rosenwasser RH; Koch WJ; Dumont AS
    J Cereb Blood Flow Metab; 2012 Sep; 32(9):1659-76. PubMed ID: 22781330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Ultrastructural and Stereological Analyses of Unruptured and Ruptured Saccular Intracranial Aneurysms.
    Korkmaz E; Kleinloog R; Verweij BH; Allijn IE; Hekking LHP; Regli L; Rinkel GJE; Ruigrok YM; Andries Post J
    J Neuropathol Exp Neurol; 2017 Oct; 76(10):908-916. PubMed ID: 28922850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Current Knowledge on the Genetic Analysis and Development of Medical Therapy for Intracranial Aneurysms].
    Aoki T; Kayahara T; Ono I; Okada A
    No Shinkei Geka; 2022 Jan; 50(1):179-195. PubMed ID: 35169098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.