BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38781811)

  • 1. Cyto R-CNN and CytoNuke Dataset: Towards reliable whole-cell segmentation in bright-field histological images.
    Raufeisen J; Xie K; Hörst F; Braunschweig T; Li J; Kleesiek J; Röhrig R; Egger J; Leibe B; Hölzle F; Hermans A; Puladi B
    Comput Methods Programs Biomed; 2024 Jul; 252():108215. PubMed ID: 38781811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images.
    Mela CA; Liu Y
    BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: comparison of 2D and 3D segmentation.
    Ren J; Yuan Y; Qi M; Tao X
    Eur Radiol; 2020 Dec; 30(12):6858-6866. PubMed ID: 32591885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A machine learning model for separating epithelial and stromal regions in oral cavity squamous cell carcinomas using H&E-stained histology images: A multi-center, retrospective study.
    Wu Y; Koyuncu CF; Toro P; Corredor G; Feng Q; Buzzy C; Old M; Teknos T; Connelly ST; Jordan RC; Lang Kuhs KA; Lu C; Lewis JS; Madabhushi A
    Oral Oncol; 2022 Aug; 131():105942. PubMed ID: 35689952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Usability of deep learning pipelines for 3D nuclei identification with Stardist and Cellpose.
    Kleinberg G; Wang S; Comellas E; Monaghan JR; Shefelbine SJ
    Cells Dev; 2022 Dec; 172():203806. PubMed ID: 36029974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning-based framework (Co-ReTr) for auto-segmentation of non-small cell-lung cancer in computed tomography images.
    Kunkyab T; Bahrami Z; Zhang H; Liu Z; Hyde D
    J Appl Clin Med Phys; 2024 Mar; 25(3):e14297. PubMed ID: 38373289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
    Gómez-Flores W; Coelho de Albuquerque Pereira W
    Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic detection of head and neck squamous cell carcinoma on histologic slides using hyperspectral microscopic imaging.
    Ma L; Little JV; Chen AY; Myers L; Sumer BD; Fei B
    J Biomed Opt; 2022 Apr; 27(4):. PubMed ID: 35484692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection of premalignant oral lesions on whole slide images using convolutional neural networks.
    Liu Y; Bilodeau E; Pollack B; Batmanghelich K
    Oral Oncol; 2022 Nov; 134():106109. PubMed ID: 36126604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellpose: a generalist algorithm for cellular segmentation.
    Stringer C; Wang T; Michaelos M; Pachitariu M
    Nat Methods; 2021 Jan; 18(1):100-106. PubMed ID: 33318659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Echocardiographic image multi-structure segmentation using Cardiac-SegNet.
    Lei Y; Fu Y; Roper J; Higgins K; Bradley JD; Curran WJ; Liu T; Yang X
    Med Phys; 2021 May; 48(5):2426-2437. PubMed ID: 33655564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-channel-and-spatial-attention neural network for automated multi-organ segmentation on head and neck CT images.
    Gou S; Tong N; Qi S; Yang S; Chin R; Sheng K
    Phys Med Biol; 2020 Dec; 65(24):245034. PubMed ID: 32097892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based ultrasonic dynamic video detection and segmentation of thyroid gland and its surrounding cervical soft tissues.
    Luo H; Ma L; Wu X; Tan G; Zhu H; Wu S; Li K; Yang Y; Li S
    Med Phys; 2022 Jan; 49(1):382-392. PubMed ID: 34730231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Cell Detection and Segmentation for Image Cytometry Reveal Th17 Cell Heterogeneity.
    Tsujikawa T; Thibault G; Azimi V; Sivagnanam S; Banik G; Means C; Kawashima R; Clayburgh DR; Gray JW; Coussens LM; Chang YH
    Cytometry A; 2019 Apr; 95(4):389-398. PubMed ID: 30714674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation of head and neck primary tumors on MRI using a multi-view CNN.
    Schouten JPE; Noteboom S; Martens RM; Mes SW; Leemans CR; de Graaf P; Steenwijk MD
    Cancer Imaging; 2022 Jan; 22(1):8. PubMed ID: 35033188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.
    Xu Y; Jia Z; Wang LB; Ai Y; Zhang F; Lai M; Chang EI
    BMC Bioinformatics; 2017 May; 18(1):281. PubMed ID: 28549410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.