These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38781874)

  • 1. Water quality effects of peat rewetting and leftover conifer brash, following peatland restoration and tree harvesting.
    Gaffney PPJ; Tang Q; Pap S; McWilliam A; Johnstone J; Li Y; Cakin I; Klein D; Taggart MA
    J Environ Manage; 2024 Jun; 360():121141. PubMed ID: 38781874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring restoration progress using pore- and surface-water chemistry across a chronosequence of formerly afforested blanket bogs.
    Gaffney PPJ; Hancock MH; Taggart MA; Andersen R
    J Environ Manage; 2018 Aug; 219():239-251. PubMed ID: 29751255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of porewater chemistry between intact, afforested and restored raised and blanket bogs.
    Howson T; Chapman PJ; Shah N; Anderson R; Holden J
    Sci Total Environ; 2021 Apr; 766():144496. PubMed ID: 33421775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of afforested peatland: Immediate effects on aquatic carbon loss.
    Gaffney PPJ; Hancock MH; Taggart MA; Andersen R
    Sci Total Environ; 2020 Nov; 742():140594. PubMed ID: 32640388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Historical peat loss explains limited short-term response of drained blanket bogs to rewetting.
    Williamson J; Rowe E; Reed D; Ruffino L; Jones P; Dolan R; Buckingham H; Norris D; Astbury S; Evans CD
    J Environ Manage; 2017 Mar; 188():278-286. PubMed ID: 27992818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of catchment conifer plantation forestry on the hydrochemistry of peatland lakes.
    Drinan TJ; Graham CT; O'Halloran J; Harrison SS
    Sci Total Environ; 2013 Jan; 443():608-20. PubMed ID: 23220753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil carbon balance of afforested peatlands in the maritime temperate climatic zone.
    Jovani-Sancho AJ; Cummins T; Byrne KA
    Glob Chang Biol; 2021 Aug; 27(15):3681-3698. PubMed ID: 33949752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrological variability of middle European peatland during the Holocene, inferred from subfossil bog pine and bog oak dendrochronology and high-resolution peat multiproxy analysis of the Budwity peatland (northern Poland).
    Margielewski W; Krąpiec M; Buczek K; Szychowska-Krąpiec E; Korzeń K; Niska M; Stachowicz-Rybka R; Wojtal AZ; Mroczkowska A; Obidowicz A; Sala D; Drzewicki W; Barniak J; Urban J
    Sci Total Environ; 2024 Jun; 931():172925. PubMed ID: 38697551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benefits of tropical peatland rewetting for subsidence reduction and forest regrowth: results from a large-scale restoration trial.
    Hooijer A; Vernimmen R; Mulyadi D; Triantomo V; Hamdani ; Lampela M; Agusti R; Page SE; Doloksaribu J; Setiawan I; Suratmanto B; Swarup S
    Sci Rep; 2024 May; 14(1):10721. PubMed ID: 38729962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics.
    Kasimir Å; He H; Coria J; Nordén A
    Glob Chang Biol; 2018 Aug; 24(8):3302-3316. PubMed ID: 28994230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testate amoebae response and vegetation composition after plantation removal on a former raised bog.
    Creevy AL; Wilkinson DM; Andersen R; Payne RJ
    Eur J Protistol; 2023 Jun; 89():125977. PubMed ID: 37060794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil organic matter carbon chemistry signatures, hydrophobicity and humification index following land use change in temperate peat soils.
    Samuel Obeng A; Dunne J; Giltrap M; Tian F
    Heliyon; 2023 Sep; 9(9):e19347. PubMed ID: 37662816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal variations in surface water chemistry at disturbed and pristine peatland sites in the Flow Country of northern Scotland.
    Muller FL; Tankéré-Muller SP
    Sci Total Environ; 2012 Oct; 435-436():351-62. PubMed ID: 22863811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in DOM of rewetted and natural peatlands - Results from high-field FT-ICR-MS and bulk optical parameters.
    Herzsprung P; Osterloh K; von Tümpling W; Harir M; Hertkorn N; Schmitt-Kopplin P; Meissner R; Bernsdorf S; Friese K
    Sci Total Environ; 2017 May; 586():770-781. PubMed ID: 28215801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolved organic matter concentration, molecular composition, and functional groups in contrasting management practices of peatlands.
    Negassa W; Eckhardt KU; Regier T; Leinweber P
    J Environ Qual; 2021 Nov; 50(6):1364-1380. PubMed ID: 34403153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drain blocking: an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland.
    Wallage ZE; Holden J; McDonald AT
    Sci Total Environ; 2006 Aug; 367(2-3):811-21. PubMed ID: 16600338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon.
    Mander Ü; Espenberg M; Melling L; Kull A
    Biogeochemistry; 2024; 167(4):523-543. PubMed ID: 38707516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. To store or to drain - To lose or to gain? Rewetting drained peatlands as a measure for increasing water storage in the transboundary Neman River Basin.
    Stachowicz M; Manton M; Abramchuk M; Banaszuk P; Jarašius L; Kamocki A; Povilaitis A; Samerkhanova A; Schäfer A; Sendžikaitė J; Wichtmann W; Zableckis N; Grygoruk M
    Sci Total Environ; 2022 Jul; 829():154560. PubMed ID: 35302023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased tree establishment in Lithuanian peat bogs--insights from field and remotely sensed approaches.
    Edvardsson J; Šimanauskienė R; Taminskas J; Baužienė I; Stoffel M
    Sci Total Environ; 2015 Feb; 505():113-20. PubMed ID: 25310886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive assessment of nitrous oxide emissions and mitigation potentials across European peatlands.
    Lin F; Zuo H; Ma X; Ma L
    Environ Pollut; 2022 May; 301():119041. PubMed ID: 35217134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.