These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38781911)

  • 1. A simulation-based approach for estimating the time-dependent reproduction number from temporally aggregated disease incidence time series data.
    Ogi-Gittins I; Hart WS; Song J; Nash RK; Polonsky J; Cori A; Hill EM; Thompson RN
    Epidemics; 2024 Jun; 47():100773. PubMed ID: 38781911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved inference of time-varying reproduction numbers during infectious disease outbreaks.
    Thompson RN; Stockwin JE; van Gaalen RD; Polonsky JA; Kamvar ZN; Demarsh PA; Dahlqwist E; Li S; Miguel E; Jombart T; Lessler J; Cauchemez S; Cori A
    Epidemics; 2019 Dec; 29():100356. PubMed ID: 31624039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the epidemic reproduction number from temporally aggregated incidence data: A statistical modelling approach and software tool.
    Nash RK; Bhatt S; Cori A; Nouvellet P
    PLoS Comput Biol; 2023 Aug; 19(8):e1011439. PubMed ID: 37639484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian estimation of the effective reproduction number for pandemic influenza A H1N1 in Guangdong Province, China.
    Yang F; Yuan L; Tan X; Huang C; Feng J
    Ann Epidemiol; 2013 Jun; 23(6):301-6. PubMed ID: 23683708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective reproduction numbers are commonly overestimated early in a disease outbreak.
    Mercer GN; Glass K; Becker NG
    Stat Med; 2011 Apr; 30(9):984-94. PubMed ID: 21284013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An IDEA for short term outbreak projection: nearcasting using the basic reproduction number.
    Fisman DN; Hauck TS; Tuite AR; Greer AL
    PLoS One; 2013; 8(12):e83622. PubMed ID: 24391797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian inferential approach to quantify the transmission intensity of disease outbreak.
    Kadi AS; Avaradi SR
    Comput Math Methods Med; 2015; 2015():256319. PubMed ID: 25784956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves.
    Parag KV
    PLoS Comput Biol; 2021 Sep; 17(9):e1009347. PubMed ID: 34492011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of force of infection based on different epidemiological proxies: 2009/2010 Influenza epidemic in Malta.
    Marmara V; Cook A; Kleczkowski A
    Epidemics; 2014 Dec; 9():52-61. PubMed ID: 25480134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Efficient Approach to Nowcasting the Time-varying Reproduction Number.
    Sumalinab B; Gressani O; Hens N; Faes C
    Epidemiology; 2024 Jul; 35(4):512-516. PubMed ID: 38788149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series.
    Li LM; Grassly NC; Fraser C
    Mol Biol Evol; 2017 Nov; 34(11):2982-2995. PubMed ID: 28981709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating individual and household reproduction numbers in an emerging epidemic.
    Fraser C
    PLoS One; 2007 Aug; 2(8):e758. PubMed ID: 17712406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission dynamics of the 2009 influenza A (H1N1) pandemic in India: the impact of holiday-related school closure.
    Ali ST; Kadi AS; Ferguson NM
    Epidemics; 2013 Dec; 5(4):157-63. PubMed ID: 24267871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurability of the epidemic reproduction number in data-driven contact networks.
    Liu QH; Ajelli M; Aleta A; Merler S; Moreno Y; Vespignani A
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12680-12685. PubMed ID: 30463945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterising seasonal influenza epidemiology using primary care surveillance data.
    Cope RC; Ross JV; Chilver M; Stocks NP; Mitchell L
    PLoS Comput Biol; 2018 Aug; 14(8):e1006377. PubMed ID: 30114215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximate Bayesian algorithm to estimate the basic reproduction number in an influenza pandemic using arrival times of imported cases.
    Chong KC; Zee BCY; Wang MH
    Travel Med Infect Dis; 2018; 23():80-86. PubMed ID: 29653203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the reproduction number of influenza A(H1N1)pdm09 in South Korea using heterogeneous models.
    Lee Y; Lee DH; Kwon HD; Kim C; Lee J
    BMC Infect Dis; 2021 Jul; 21(1):658. PubMed ID: 34233622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of prior information on estimates of disease transmissibility using Bayesian tools.
    Moser CB; Gupta M; Archer BN; White LF
    PLoS One; 2015; 10(3):e0118762. PubMed ID: 25793993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for estimating the transmissibility of influenza using serial cross-sectional seroepidemiological data.
    Yang Y; Asai Y; Nishiura H
    J Theor Biol; 2021 Feb; 511():110566. PubMed ID: 33347894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.