BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38782198)

  • 1. Biomathematical modeling of fatigue due to sleep inertia.
    McCauley ME; McCauley P; Kalachev LV; Riedy SM; Banks S; Ecker AJ; Dinges DF; Van Dongen HPA
    J Theor Biol; 2024 Aug; 590():111851. PubMed ID: 38782198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance.
    McCauley P; Kalachev LV; Mollicone DJ; Banks S; Dinges DF; Van Dongen HP
    Sleep; 2013 Dec; 36(12):1987-97. PubMed ID: 24293775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic sleep restriction greatly magnifies performance decrements immediately after awakening.
    McHill AW; Hull JT; Cohen DA; Wang W; Czeisler CA; Klerman EB
    Sleep; 2019 May; 42(5):. PubMed ID: 30722039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep inertia during a simulated 6-h on/6-h off fixed split duty schedule.
    Hilditch CJ; Short M; Van Dongen HP; Centofanti SA; Dorrian J; Kohler M; Banks S
    Chronobiol Int; 2016; 33(6):685-96. PubMed ID: 27078176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical research issues in development of biomathematical models of fatigue and performance.
    Dinges DF
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A181-91. PubMed ID: 15018283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of biomathematical model predictions for cognitive performance impairment in individuals: accounting for unknown traits and uncertain states in homeostatic and circadian processes.
    Van Dongen HP; Mott CG; Huang JK; Mollicone DJ; McKenzie FD; Dinges DF
    Sleep; 2007 Sep; 30(9):1129-43. PubMed ID: 17910385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An endogenous circadian rhythm in sleep inertia results in greatest cognitive impairment upon awakening during the biological night.
    Scheer FA; Shea TJ; Hilton MF; Shea SA
    J Biol Rhythms; 2008 Aug; 23(4):353-61. PubMed ID: 18663242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep inertia associated with a 10-min nap before the commute home following a night shift: A laboratory simulation study.
    Hilditch CJ; Dorrian J; Centofanti SA; Van Dongen HP; Banks S
    Accid Anal Prev; 2017 Feb; 99(Pt B):411-415. PubMed ID: 26589387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of self-awakening from nocturnal sleep on sleep inertia.
    Ikeda H; Hayashi M
    Biol Psychol; 2010 Jan; 83(1):15-9. PubMed ID: 19800388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duration of sleep inertia after napping during simulated night work and in extended operations.
    Signal TL; van den Berg MJ; Mulrine HM; Gander PH
    Chronobiol Int; 2012 Jul; 29(6):769-79. PubMed ID: 22734577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative physiologically based modeling of subjective fatigue during sleep deprivation.
    Fulcher BD; Phillips AJ; Robinson PA
    J Theor Biol; 2010 May; 264(2):407-19. PubMed ID: 20176034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue risk management based on self-reported fatigue: Expanding a biomathematical model of fatigue-related performance deficits to also predict subjective sleepiness.
    McCauley ME; McCauley P; Riedy SM; Banks S; Ecker AJ; Kalachev LV; Rangan S; Dinges DF; Van Dongen HPA
    Transp Res Part F Traffic Psychol Behav; 2021 May; 79():94-106. PubMed ID: 33994837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of sleep inertia on visual selective attention for rare targets and the influence of chronotype.
    Ritchie HK; Burke TM; Dear TB; Mchill AW; Axelsson J; Wright KP
    J Sleep Res; 2017 Oct; 26(5):551-558. PubMed ID: 28378363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From physiological awakening to pathological sleep inertia: Neurophysiological and behavioural characteristics of the sleep-to-wake transition.
    Ruby P; Evangelista E; Bastuji H; Peter-Derex L
    Neurophysiol Clin; 2024 Apr; 54(2):102934. PubMed ID: 38394921
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Reifman J; Kumar K; Wesensten NJ; Tountas NA; Balkin TJ; Ramakrishnan S
    Sleep; 2016 Dec; 39(12):2157-2159. PubMed ID: 27634801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules.
    Ramakrishnan S; Wesensten NJ; Balkin TJ; Reifman J
    Sleep; 2016 Jan; 39(1):249-62. PubMed ID: 26518594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sleep/wake history and circadian phase on proposed pilot fatigue safety performance indicators.
    Gander PH; Mulrine HM; van den Berg MJ; Smith AA; Signal TL; Wu LJ; Belenky G
    J Sleep Res; 2015 Feb; 24(1):110-9. PubMed ID: 25082509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new mathematical model for the homeostatic effects of sleep loss on neurobehavioral performance.
    McCauley P; Kalachev LV; Smith AD; Belenky G; Dinges DF; Van Dongen HP
    J Theor Biol; 2009 Jan; 256(2):227-39. PubMed ID: 18938181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Summary of the key features of seven biomathematical models of human fatigue and performance.
    Mallis MM; Mejdal S; Nguyen TT; Dinges DF
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A4-14. PubMed ID: 15018262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep inertia: best time not to wake up?
    Naitoh P; Kelly T; Babkoff H
    Chronobiol Int; 1993 Apr; 10(2):109-18. PubMed ID: 8500187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.