BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38782227)

  • 1. Development and Validation of Artificial Intelligence-Based Algorithms for Predicting the Segments Debulked by Rotational Atherectomy Using Intravascular Ultrasound Images.
    Hashimoto K; Fujii K; Ueda D; Sumiyoshi A; Hasegawa K; Fukuhara R; Otagaki M; Okamura A; Yamamoto W; Kawano N; Yamamoto A; Miki Y; Shiojima I
    Am J Cardiol; 2024 Jul; 223():1-6. PubMed ID: 38782227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of optimal debulking segments before rotational atherectomy based on pre-procedural intravascular ultrasound findings.
    Hashimoto K; Fujii K; Shibutani H; Matsumura K; Tsujimoto S; Otagaki M; Morishita S; Shiojima I
    Int J Cardiovasc Imaging; 2021 Mar; 37(3):803-812. PubMed ID: 33111175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intravascular ultrasound enhances the safety of rotational atherectomy.
    Sakakura K; Yamamoto K; Taniguchi Y; Tsurumaki Y; Momomura SI; Fujita H
    Cardiovasc Revasc Med; 2018 Apr; 19(3 Pt A):286-291. PubMed ID: 29113866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical coherence tomography-guided versus intravascular ultrasound-guided rotational atherectomy in patients with calcified coronary lesions.
    Kobayashi N; Ito Y; Yamawaki M; Araki M; Obokata M; Sakamoto Y; Mori S; Tsutsumi M; Honda Y; Makino K; Shirai S; Mizusawa M; Hirano K
    EuroIntervention; 2020 Jul; 16(4):e313-e321. PubMed ID: 31845895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of medial damage by rotational atherectomy using intravascular ultrasound.
    Hashimoto K; Fujii K; Shibutani H; Tsujimoto S; Otagaki M; Morishita S; Hirose T; Shiojima I
    Coron Artery Dis; 2022 Jun; 33(4):295-301. PubMed ID: 35044331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intravascular ultrasound assessment of the effects of rotational atherectomy in calcified coronary artery lesions.
    Kim SS; Yamamoto MH; Maehara A; Sidik N; Koyama K; Berry C; Oldroyd KG; Mintz GS; McEntegart M
    Int J Cardiovasc Imaging; 2018 Sep; 34(9):1365-1371. PubMed ID: 29663177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of optical coherence tomography-guided and intravascular ultrasound-guided rotational atherectomy for calcified coronary lesions.
    Teng W; Li Q; Ma Y; Cao C; Liu J; Zhao H; Lu M; Hou C; Wang W
    BMC Cardiovasc Disord; 2021 Jun; 21(1):290. PubMed ID: 34116631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Efficacy of intravascular ultrasound-guided rotational atherectomy combined with cutting balloon for pretreatment of severe coronary artery calcified lesions].
    Han F; Zheng H; Zheng X; Jin H; Wang Z; Zeng H; Qiu C; Liu J; Zhu Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 Jul; 41(7):1044-1049. PubMed ID: 34308854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intravascular ultrasound-factors associated with slow flow following rotational atherectomy in heavily calcified coronary artery.
    Jinnouchi H; Sakakura K; Taniguchi Y; Tsukui T; Watanabe Y; Yamamoto K; Seguchi M; Wada H; Fujita H
    Sci Rep; 2022 Apr; 12(1):5674. PubMed ID: 35383228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of complications with a 1.25-mm versus a 1.5-mm burr for severely calcified lesions that could not be crossed by an intravascular ultrasound catheter.
    Sakakura K; Taniguchi Y; Yamamoto K; Tsukui T; Seguchi M; Wada H; Momomura SI; Fujita H
    Cardiovasc Interv Ther; 2020 Jul; 35(3):227-233. PubMed ID: 31327122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing intravascular ultrasound imaging prior to treatment of severely calcified coronary lesions with orbital atherectomy: An ORBIT II sub-analysis.
    Shlofmitz E; Martinsen B; Lee M; Généreux P; Behrens A; Kumar G; Puma J; Shlofmitz R; Chambers J
    J Interv Cardiol; 2017 Dec; 30(6):570-576. PubMed ID: 28786143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the incidence of slow flow after rotational atherectomy with IVUS-crossable versus IVUS-uncrossable calcified lesions.
    Sakakura K; Taniguchi Y; Yamamoto K; Tsukui T; Seguchi M; Wada H; Momomura SI; Fujita H
    Sci Rep; 2020 Jul; 10(1):11362. PubMed ID: 32647194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the Use of Intravascular Imaging on Patients Who Underwent Orbital Atherectomy.
    Lee MS; Shlofmitz E; Kong J; Lluri G; Srivastava PK; Shlofmitz R
    J Invasive Cardiol; 2018 Feb; 30(2):77-80. PubMed ID: 29378972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility and safety of minimal-contrast IVUS-guided rotational atherectomy for complex calcified coronary artery disease.
    Allali A; Traboulsi H; Sulimov DS; Abdel-Wahab M; Woitek F; Mangner N; Hemetsberger R; Mankerious N; Elbasha K; Toelg R; Richardt G
    Clin Res Cardiol; 2021 Oct; 110(10):1668-1679. PubMed ID: 34255133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of clinical outcomes of intravascular ultrasound-calcified nodule between percutaneous coronary intervention with versus without rotational atherectomy in a propensity-score matched analysis.
    Watanabe Y; Sakakura K; Taniguchi Y; Yamamoto K; Seguchi M; Tsukui T; Jinnouchi H; Wada H; Momomura SI; Fujita H
    PLoS One; 2020; 15(11):e0241836. PubMed ID: 33152027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Orbital Versus Rotational Atherectomy Plaque Modification in Severely Calcified Lesions Assessed by Optical Coherence Tomography.
    Yamamoto MH; Maehara A; Karimi Galougahi K; Mintz GS; Parviz Y; Kim SS; Koyama K; Amemiya K; Kim SY; Ishida M; Losquadro M; Kirtane AJ; Haag E; Sosa FA; Stone GW; Moses JW; Ochiai M; Shlofmitz RA; Ali ZA
    JACC Cardiovasc Interv; 2017 Dec; 10(24):2584-2586. PubMed ID: 29268891
    [No Abstract]   [Full Text] [Related]  

  • 17. Intensive plaque modification with rotational atherectomy and cutting balloon before drug-eluting stent implantation for patients with severely calcified coronary lesions: a pilot clinical study.
    Li Q; He Y; Chen L; Chen M
    BMC Cardiovasc Disord; 2016 May; 16():112. PubMed ID: 27230875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic detection of vessel structure by deep learning using intravascular ultrasound images of the coronary arteries.
    Shinohara H; Kodera S; Ninomiya K; Nakamoto M; Katsushika S; Saito A; Minatsuki S; Kikuchi H; Kiyosue A; Higashikuni Y; Takeda N; Fujiu K; Ando J; Akazawa H; Morita H; Komuro I
    PLoS One; 2021; 16(8):e0255577. PubMed ID: 34351974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin-strut drug-eluting stents are more favorable for severe calcified lesions after rotational atherectomy than thick-strut drug-eluting stents.
    Lee Y; Tanaka A; Mori N; Yoshimura T; Nakamura D; Taniike M; Makino N; Egami Y; Shutta R; Tanouchi J; Nishino M
    J Invasive Cardiol; 2014 Feb; 26(2):41-5. PubMed ID: 24486659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary study of the significance of reverberation by IVUS detection for patients with severe calcified lesions.
    You W; Zhang HL; Xu T; Meng PN; Zhou YH; Wu XQ; Wu ZM; Tao B; Guo YJ; Nong JC; Ye F
    Int J Cardiovasc Imaging; 2023 Mar; 39(3):667-676. PubMed ID: 36609638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.