BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38782298)

  • 1. Systematic evaluation of single-cell RNA-seq analyses performance based on long-read sequencing platforms.
    Deng E; Shen Q; Zhang J; Fang Y; Chang L; Luo G; Fan X
    J Adv Res; 2024 May; ():. PubMed ID: 38782298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodologies for Transcript Profiling Using Long-Read Technologies.
    Oikonomopoulos S; Bayega A; Fahiminiya S; Djambazian H; Berube P; Ragoussis J
    Front Genet; 2020; 11():606. PubMed ID: 32733532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and comprehensive comparison of PacBio and nanopore-based RNA sequencing of the
    Cui J; Shen N; Lu Z; Xu G; Wang Y; Jin B
    Plant Methods; 2020; 16():85. PubMed ID: 32536962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis.
    Weirather JL; de Cesare M; Wang Y; Piazza P; Sebastiano V; Wang XJ; Buck D; Au KF
    F1000Res; 2017; 6():100. PubMed ID: 28868132
    [No Abstract]   [Full Text] [Related]  

  • 5. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Transcriptome and Epitranscriptome in Plants Using PacBio Iso-Seq and Nanopore-Based Direct RNA Sequencing.
    Zhao L; Zhang H; Kohnen MV; Prasad KVSK; Gu L; Reddy ASN
    Front Genet; 2019; 10():253. PubMed ID: 30949200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-length isoform concatenation sequencing to resolve cancer transcriptome complexity.
    Wijeratne S; Gonzalez MEH; Roach K; Miller KE; Schieffer KM; Fitch JR; Leonard J; White P; Kelly BJ; Cottrell CE; Mardis ER; Wilson RK; Miller AR
    BMC Genomics; 2024 Jan; 25(1):122. PubMed ID: 38287261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Analysis of PacBio and Oxford Nanopore Sequencing Technologies for Transcriptomic Landscape Identification of
    Udaondo Z; Sittikankaew K; Uengwetwanit T; Wongsurawat T; Sonthirod C; Jenjaroenpun P; Pootakham W; Karoonuthaisiri N; Nookaew I
    Life (Basel); 2021 Aug; 11(8):. PubMed ID: 34440606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA.
    Volden R; Palmer T; Byrne A; Cole C; Schmitz RJ; Green RE; Vollmers C
    Proc Natl Acad Sci U S A; 2018 Sep; 115(39):9726-9731. PubMed ID: 30201725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long read single cell RNA sequencing reveals the isoform diversity of Plasmodium vivax transcripts.
    Hazzard B; Sá JM; Ellis AC; Pascini TV; Amin S; Wellems TE; Serre D
    PLoS Negl Trop Dis; 2022 Dec; 16(12):e0010991. PubMed ID: 36525464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of PacBio and ONT RNA sequencing methods for Nemopilema Nomurai venom identification.
    Ma Y; Li J; Yu H; Teng L; Geng H; Li R; Xing R; Liu S; Li P
    Genomics; 2023 Nov; 115(6):110709. PubMed ID: 37739021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing.
    Fan X; Tang D; Liao Y; Li P; Zhang Y; Wang M; Liang F; Wang X; Gao Y; Wen L; Wang D; Wang Y; Tang F
    PLoS Biol; 2020 Dec; 18(12):e3001017. PubMed ID: 33378329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating long-read de novo assembly tools for eukaryotic genomes: insights and considerations.
    Cosma BM; Shirali Hossein Zade R; Jordan EN; van Lent P; Peng C; Pillay S; Abeel T
    Gigascience; 2022 Dec; 12():. PubMed ID: 38000912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics.
    Athanasopoulou K; Boti MA; Adamopoulos PG; Skourou PC; Scorilas A
    Life (Basel); 2021 Dec; 12(1):. PubMed ID: 35054423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple Long-Read Sequencing Survey of Herpes Simplex Virus Dynamic Transcriptome.
    Tombácz D; Moldován N; Balázs Z; Gulyás G; Csabai Z; Boldogkői M; Snyder M; Boldogkői Z
    Front Genet; 2019; 10():834. PubMed ID: 31608102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative profiling of Epstein-Barr virus transcriptome using a multiplatform approach.
    Fülöp Á; Torma G; Moldován N; Szenthe K; Bánáti F; Almsarrhad IAA; Csabai Z; Tombácz D; Minárovits J; Boldogkői Z
    Virol J; 2022 Jan; 19(1):7. PubMed ID: 34991630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-Length Single-Cell RNA-Sequencing with FLASH-seq.
    Hahaut V; Picelli S
    Methods Mol Biol; 2023; 2584():123-164. PubMed ID: 36495447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of third-generation sequencing in cancer research.
    Chen Z; He X
    Med Rev (2021); 2021 Dec; 1(2):150-171. PubMed ID: 37724303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequencing of individual barcoded cDNAs using Pacific Biosciences and Oxford Nanopore Technologies reveals platform-specific error patterns.
    Mikheenko A; Prjibelski AD; Joglekar A; Tilgner HU
    Genome Res; 2022 Apr; 32(4):726-737. PubMed ID: 35301264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Illuminating the dark side of the human transcriptome with long read transcript sequencing.
    Kuo RI; Cheng Y; Zhang R; Brown JWS; Smith J; Archibald AL; Burt DW
    BMC Genomics; 2020 Oct; 21(1):751. PubMed ID: 33126848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.