These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38782700)

  • 1. Optical tweezers microrheology maps micro-mechanics of complex systems.
    Robertson-Anderson RM
    Trends Biochem Sci; 2024 Jul; 49(7):649-650. PubMed ID: 38782700
    [No Abstract]   [Full Text] [Related]  

  • 2. Linear microrheology with optical tweezers of living cells 'is not an option'!
    Tassieri M
    Soft Matter; 2015 Aug; 11(29):5792-8. PubMed ID: 26100967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing intracellular mechanics via optical tweezers-based microrheology.
    Vos BE; Muenker TM; Betz T
    Curr Opin Cell Biol; 2024 Jun; 88():102374. PubMed ID: 38824902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale rheology of glioma cells.
    Alibert C; Pereira D; Lardier N; Etienne-Manneville S; Goud B; Asnacios A; Manneville JB
    Biomaterials; 2021 Aug; 275():120903. PubMed ID: 34102526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrheology with optical tweezers: measuring the relative viscosity of solutions 'at a glance'.
    Tassieri M; Del Giudice F; Robertson EJ; Jain N; Fries B; Wilson R; Glidle A; Greco F; Netti PA; Maffettone PL; Bicanic T; Cooper JM
    Sci Rep; 2015 Mar; 5():8831. PubMed ID: 25743468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using optical tweezers for the characterization of polyelectrolyte solutions with very low viscoelasticity.
    Pommella A; Preziosi V; Caserta S; Cooper JM; Guido S; Tassieri M
    Langmuir; 2013 Jul; 29(29):9224-30. PubMed ID: 23786307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping intracellular mechanics on micropatterned substrates.
    Mandal K; Asnacios A; Goud B; Manneville JB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7159-E7168. PubMed ID: 27799529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical trapping microrheology in cultured human cells.
    Bertseva E; Grebenkov D; Schmidhauser P; Gribkova S; Jeney S; Forró L
    Eur Phys J E Soft Matter; 2012 Jul; 35(7):63. PubMed ID: 22821510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS).
    Chiang CC; Wei MT; Chen YQ; Yen PW; Huang YC; Chen JY; Lavastre O; Guillaume H; Guillaume D; Chiou A
    Opt Express; 2011 Apr; 19(9):8847-54. PubMed ID: 21643138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring cell and tissue mechanics with optical tweezers.
    Català-Castro F; Schäffer E; Krieg M
    J Cell Sci; 2022 Aug; 135(15):. PubMed ID: 35942913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.
    Yang Y; Valentine MT
    Methods Cell Biol; 2013; 115():75-96. PubMed ID: 23973067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications.
    Robertson-Anderson RM
    ACS Macro Lett; 2018 Aug; 7(8):968-975. PubMed ID: 35650960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of a Kinesin Motor in Cancer Cell Mechanics.
    Mandal K; Pogoda K; Nandi S; Mathieu S; Kasri A; Klein E; Radvanyi F; Goud B; Janmey PA; Manneville JB
    Nano Lett; 2019 Nov; 19(11):7691-7702. PubMed ID: 31565944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Living cells as a biological analog of optical tweezers - a non-invasive microrheology approach.
    Hardiman W; Clark M; Friel C; Huett A; Pérez-Cota F; Setchfield K; Wright AJ; Tassieri M
    Acta Biomater; 2023 Aug; 166():317-325. PubMed ID: 37137402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular viscoelasticity probed by active rheology in optical tweezers.
    Lyubin EV; Khokhlova MD; Skryabina MN; Fedyanin AA
    J Biomed Opt; 2012 Oct; 17(10):101510. PubMed ID: 23223986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-rheology on (polymer-grafted) colloids using optical tweezers.
    Gutsche C; Elmahdy MM; Kegler K; Semenov I; Stangner T; Otto O; Ueberschär O; Keyser UF; Krueger M; Rauscher M; Weeber R; Harting J; Kim YW; Lobaskin V; Netz RR; Kremer F
    J Phys Condens Matter; 2011 May; 23(18):184114. PubMed ID: 21508470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics.
    Guo M; Ehrlicher AJ; Mahammad S; Fabich H; Jensen MH; Moore JR; Fredberg JJ; Goldman RD; Weitz DA
    Biophys J; 2013 Oct; 105(7):1562-8. PubMed ID: 24094397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium fluctuations of mechanically stretched single red blood cells detected by optical tweezers.
    Wojdyla M; Raj S; Petrov D
    Eur Biophys J; 2013 Jul; 42(7):539-47. PubMed ID: 23624638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Halo: A Proof of Concept for a New Broadband Microrheology Tool.
    Ramírez J; Gibson GM; Tassieri M
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying single red blood cells under a tunable external force by combining passive microrheology with Raman spectroscopy.
    Raj S; Wojdyla M; Petrov D
    Cell Biochem Biophys; 2013 Apr; 65(3):347-61. PubMed ID: 23080020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.