These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 38782768)
1. Identifying novel mechanisms of per- and polyfluoroalkyl substance-induced hepatotoxicity using FRG humanized mice. Robarts DR; Paine-Cabrera D; Kotulkar M; Venneman KK; Gunewardena S; Foquet L; Bial G; Apte U Arch Toxicol; 2024 Sep; 98(9):3063-3075. PubMed ID: 38782768 [TBL] [Abstract][Full Text] [Related]
2. Identifying Human Specific Adverse Outcome Pathways of Per- and Polyfluoroalkyl Substances Using Liver-Chimeric Humanized Mice. Robarts DR; Paine-Cabrera D; Kotulkar M; Venneman KK; Gunewardena S; Corton JC; Lau C; Foquet L; Bial G; Apte U bioRxiv; 2023 Feb; ():. PubMed ID: 36778348 [TBL] [Abstract][Full Text] [Related]
3. PPARα/ACOX1 as a novel target for hepatic lipid metabolism disorders induced by per- and polyfluoroalkyl substances: An integrated approach. Yang W; Ling X; He S; Cui H; Yang Z; An H; Wang L; Zou P; Chen Q; Liu J; Ao L; Cao J Environ Int; 2023 Aug; 178():108138. PubMed ID: 37572494 [TBL] [Abstract][Full Text] [Related]
4. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Beggs KM; McGreal SR; McCarthy A; Gunewardena S; Lampe JN; Lau C; Apte U Toxicol Appl Pharmacol; 2016 Aug; 304():18-29. PubMed ID: 27153767 [TBL] [Abstract][Full Text] [Related]
5. Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Louisse J; Rijkers D; Stoopen G; Janssen A; Staats M; Hoogenboom R; Kersten S; Peijnenburg A Arch Toxicol; 2020 Sep; 94(9):3137-3155. PubMed ID: 32588087 [TBL] [Abstract][Full Text] [Related]
6. The role of mouse and human peroxisome proliferator-activated receptor-α in modulating the hepatic effects of perfluorooctane sulfonate in mice. Su S; Billy LJ; Chang S; Gonzalez FJ; Patterson AD; Peters JM Toxicology; 2022 Jan; 465():153056. PubMed ID: 34861291 [TBL] [Abstract][Full Text] [Related]
7. Legacy and alternative per- and polyfluoroalkyl substances (PFAS) alter the lipid profile of HepaRG cells. Kashobwe L; Sadrabadi F; Brunken L; Coelho ACMF; Sandanger TM; Braeuning A; Buhrke T; Öberg M; Hamers T; Leonards PEG Toxicology; 2024 Aug; 506():153862. PubMed ID: 38866127 [TBL] [Abstract][Full Text] [Related]
8. The role of maternal high fat diet on mouse pup metabolic endpoints following perinatal PFAS and PFAS mixture exposure. Marques ES; Agudelo J; Kaye EM; Modaresi SMS; Pfohl M; Bečanová J; Wei W; Polunas M; Goedken M; Slitt AL Toxicology; 2021 Oct; 462():152921. PubMed ID: 34464680 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional pathways linked to fetal and maternal hepatic dysfunction caused by gestational exposure to perfluorooctanoic acid (PFOA) or hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) in CD-1 mice. Blake BE; Miller CN; Nguyen H; Chappell VA; Phan TP; Phadke DP; Balik-Meisner MR; Mav D; Shah RR; Fenton SE Ecotoxicol Environ Saf; 2022 Dec; 248():114314. PubMed ID: 36436258 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional effects of binary combinations of PFAS in FaO cells. Bjork JA; Dawson DA; Krogstad JO; Wallace KB Toxicology; 2021 Dec; 464():152997. PubMed ID: 34695511 [TBL] [Abstract][Full Text] [Related]
11. Perfluorooctanoic acid activates multiple nuclear receptor pathways and skews expression of genes regulating cholesterol homeostasis in liver of humanized PPARα mice fed an American diet. Schlezinger JJ; Puckett H; Oliver J; Nielsen G; Heiger-Bernays W; Webster TF Toxicol Appl Pharmacol; 2020 Oct; 405():115204. PubMed ID: 32822737 [TBL] [Abstract][Full Text] [Related]
12. Perfluoroalkyl Substances (PFAS) Affect Inflammation in Lung Cells and Tissues. Dragon J; Hoaglund M; Badireddy AR; Nielsen G; Schlezinger J; Shukla A Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239886 [TBL] [Abstract][Full Text] [Related]
13. A novel molecular pathway of lipid accumulation in human hepatocytes caused by PFOA and PFOS. Gou X; Tian M; Yan L; Xia P; Ji H; Tan H; Shi W; Yu H; Zhang X Environ Int; 2024 Sep; 191():108962. PubMed ID: 39159514 [TBL] [Abstract][Full Text] [Related]
14. The effects of perfluorooctanoate on high fat diet induced non-alcoholic fatty liver disease in mice. Li X; Wang Z; Klaunig JE Toxicology; 2019 Mar; 416():1-14. PubMed ID: 30711707 [TBL] [Abstract][Full Text] [Related]
15. Assessing the hepatotoxicity of PFOA, PFOS, and 6:2 Cl-PFESA in black-spotted frogs (Rana nigromaculata) and elucidating potential association with gut microbiota. Lin H; Wu H; Liu F; Yang H; Shen L; Chen J; Zhang X; Zhong Y; Zhang H; Liu Z Environ Pollut; 2022 Nov; 312():120029. PubMed ID: 36030957 [TBL] [Abstract][Full Text] [Related]
16. Exposure to a mixture of legacy, alternative, and replacement per- and polyfluoroalkyl substances (PFAS) results in sex-dependent modulation of cholesterol metabolism and liver injury. Roth K; Yang Z; Agarwal M; Liu W; Peng Z; Long Z; Birbeck J; Westrick J; Liu W; Petriello MC Environ Int; 2021 Dec; 157():106843. PubMed ID: 34479135 [TBL] [Abstract][Full Text] [Related]
17. Developmental exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) selectively decreases brain dopamine levels in Northern leopard frogs. Foguth RM; Flynn RW; de Perre C; Iacchetta M; Lee LS; Sepúlveda MS; Cannon JR Toxicol Appl Pharmacol; 2019 Aug; 377():114623. PubMed ID: 31195004 [TBL] [Abstract][Full Text] [Related]
18. Exposure of Roth K; Yang Z; Agarwal M; Birbeck J; Westrick J; Lydic T; Gurdziel K; Petriello MC Environ Health Perspect; 2024 Aug; 132(8):87007. PubMed ID: 39177951 [TBL] [Abstract][Full Text] [Related]
19. In vitro evaluation of the carcinogenic potential of perfluorinated chemicals. Vaccari M; Serra S; Ranzi A; Aldrovandi F; Maffei G; Mascolo MG; Mescoli A; Montanari E; Pillo G; Rotondo F; Scaroni I; Vaccari L; Zanzi C; Fletcher T; Paparella M; Colacci A ALTEX; 2024; 41(3):439-456. PubMed ID: 38652827 [TBL] [Abstract][Full Text] [Related]
20. HNF4A as a potential target of PFOA and PFOS leading to hepatic steatosis: Integrated molecular docking, molecular dynamic and transcriptomic analyses. Li R; Zhang Z; Xuan Y; Wang Y; Zhong Y; Zhang L; Zhang J; Chen Q; Yu S; Yuan J Chem Biol Interact; 2024 Feb; 390():110867. PubMed ID: 38199259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]