These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38782877)

  • 1. Impact Exploration of Spatiotemporal Feature Derivation and Selection on Machine Learning-Based Predictive Models for Post-Embolization Cerebral Aneurysm Recanalization.
    Liao J; Misaki K; Sakamoto J
    Cardiovasc Eng Technol; 2024 Aug; 15(4):394-404. PubMed ID: 38782877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning.
    Paliwal N; Jaiswal P; Tutino VM; Shallwani H; Davies JM; Siddiqui AH; Rai R; Meng H
    Neurosurg Focus; 2018 Nov; 45(5):E7. PubMed ID: 30453461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid dynamic analysis in predicting the recanalization of intracranial aneurysms after coil embolization - A study of spatiotemporal characteristics.
    Liao J; Misaki K; Uno T; Nambu I; Kamide T; Chen Z; Nakada M; Sakamoto J
    Heliyon; 2024 Jan; 10(1):e22801. PubMed ID: 38226254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the Hemodynamics in Residual Cavities of Intracranial Aneurysm after Coil Embolization with Combined Computational Flow Dynamics and Silent Magnetic Resonance Angiography.
    Suzuki T; Genkai N; Nomura T; Abe H
    J Stroke Cerebrovasc Dis; 2020 Dec; 29(12):105290. PubMed ID: 32992205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study.
    Chen G; Lu M; Shi Z; Xia S; Ren Y; Liu Z; Liu X; Li Z; Mao L; Li XL; Zhang B; Zhang LJ; Lu GM
    Eur Radiol; 2020 Sep; 30(9):5170-5182. PubMed ID: 32350658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Significant Three-Dimensional Hemodynamic Features for Postembolization Recanalization in Cerebral Aneurysms Through Explainable Artificial Intelligence.
    Liao J; Misaki K; Uno T; Futami K; Nakada M; Sakamoto J
    World Neurosurg; 2024 Apr; 184():e166-e177. PubMed ID: 38246531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning-Based Prediction of Small Intracranial Aneurysm Rupture Status Using CTA-Derived Hemodynamics: A Multicenter Study.
    Shi Z; Chen GZ; Mao L; Li XL; Zhou CS; Xia S; Zhang YX; Zhang B; Hu B; Lu GM; Zhang LJ
    AJNR Am J Neuroradiol; 2021 Apr; 42(4):648-654. PubMed ID: 33664115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting incomplete occlusion of intracranial aneurysms treated with flow diverters using machine learning models.
    Hammoud B; El Zini J; Awad M; Sweid A; Tjoumakaris S; Jabbour P
    J Neurosurg; 2024 Jun; 140(6):1716-1725. PubMed ID: 38039540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new combined parameter predicts re-treatment for coil-embolized aneurysms: a computational fluid dynamics multivariable analysis study.
    Fujimura S; Takao H; Suzuki T; Dahmani C; Ishibashi T; Mamori H; Yamamoto M; Murayama Y
    J Neurointerv Surg; 2018 Aug; 10(8):791-796. PubMed ID: 29246907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Risk of Intracranial Aneurysm Rupture Using Morphological and Hemodynamic Biomarkers Evaluated from Magnetic Resonance Fluid Dynamics and Computational Fluid Dynamics.
    Perera R; Isoda H; Ishiguro K; Mizuno T; Takehara Y; Terada M; Tanoi C; Naito T; Sakahara H; Hiramatsu H; Namba H; Izumi T; Wakabayashi T; Kosugi T; Onishi Y; Alley M; Komori Y; Ikeda M; Naganawa S
    Magn Reson Med Sci; 2020 Dec; 19(4):333-344. PubMed ID: 31956175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating variability of patient inflow conditions into statistical models for aneurysm rupture assessment.
    Detmer FJ; Mut F; Slawski M; Hirsch S; Bijlenga P; Cebral JR
    Acta Neurochir (Wien); 2020 Mar; 162(3):553-566. PubMed ID: 32008209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive investigation of morphological features responsible for cerebral aneurysm rupture using machine learning.
    Zakeri M; Atef A; Aziznia M; Jafari A
    Sci Rep; 2024 Jul; 14(1):15777. PubMed ID: 38982160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk factors for recanalization of dense coil packing for unruptured cerebral aneurysms in endovascular coil embolization: Analysis of a single center's experience.
    Fuga M; Tanaka T; Irie K; Kajiwara I; Tachi R; Teshigawara A; Ishibashi T; Hasegawa Y; Murayama Y
    J Clin Neurosci; 2022 Apr; 98():175-181. PubMed ID: 35183894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study.
    Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR
    Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359
    [No Abstract]   [Full Text] [Related]  

  • 17. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Aneurysm Stability Using a Machine Learning Model Based on PyRadiomics-Derived Morphological Features.
    Liu Q; Jiang P; Jiang Y; Ge H; Li S; Jin H; Li Y
    Stroke; 2019 Sep; 50(9):2314-2321. PubMed ID: 31288671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher oscillatory shear index is related to aneurysm recanalization after coil embolization in posterior communicating artery aneurysms.
    Kim T; Oh CW; Bang JS; Ban SP; Lee SU; Kim YD; Kwon OK
    Acta Neurochir (Wien); 2021 Aug; 163(8):2327-2337. PubMed ID: 33037924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.