BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38783010)

  • 1. Comparing ANI-2x, ANI-1ccx neural networks, force field, and DFT methods for predicting conformational potential energy of organic molecules.
    Rezaee M; Ekrami S; Hashemianzadeh SM
    Sci Rep; 2024 May; 14(1):11791. PubMed ID: 38783010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules.
    Smith JS; Zubatyuk R; Nebgen B; Lubbers N; Barros K; Roitberg AE; Isayev O; Tretiak S
    Sci Data; 2020 May; 7(1):134. PubMed ID: 32358545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling pyranose ring pucker in carbohydrates using machine learning and semi-empirical quantum chemical methods.
    Kong L; Bryce RA
    J Comput Chem; 2022 Nov; 43(30):2009-2022. PubMed ID: 36165294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of Bound Conformations in Conformational Ensembles for X-ray Ligands Predicted by the ANI-2X Machine Learning Potential.
    Han F; Hao D; He X; Wang L; Niu T; Wang J
    J Chem Inf Model; 2023 Nov; 63(21):6608-6618. PubMed ID: 37899502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Thermochemical Machine Learning for Potential Energy Curves and Geometry Optimization.
    Folmsbee DL; Koes DR; Hutchison GR
    J Phys Chem A; 2021 Mar; 125(9):1987-1993. PubMed ID: 33630611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Evaluation of Geometry Optimization Algorithms in Conjunction with ANI Potentials.
    Hao D; He X; Roitberg AE; Zhang S; Wang J
    J Chem Theory Comput; 2022 Feb; 18(2):978-991. PubMed ID: 35020396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry Optimization Algorithms in Conjunction with the Machine Learning Potential ANI-2x Facilitate the Structure-Based Virtual Screening and Binding Mode Prediction.
    Wang L; He X; Ji B; Han F; Niu T; Cai L; Zhai J; Hao D; Wang J
    Biomolecules; 2024 May; 14(6):. PubMed ID: 38927052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost.
    Smith JS; Isayev O; Roitberg AE
    Chem Sci; 2017 Apr; 8(4):3192-3203. PubMed ID: 28507695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Efficient Approach to Large-Scale Ab Initio Conformational Energy Profiles of Small Molecules.
    Wang Y; Walker BD; Liu C; Ren P
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How accurate is the description of ligand-protein interactions by a hybrid QM/MM approach?
    Kollar J; Frecer V
    J Mol Model; 2017 Dec; 24(1):11. PubMed ID: 29234892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens.
    Devereux C; Smith JS; Huddleston KK; Barros K; Zubatyuk R; Isayev O; Roitberg AE
    J Chem Theory Comput; 2020 Jul; 16(7):4192-4202. PubMed ID: 32543858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational stability, the spectroscopic (FT-IR and UV), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 6,8-diphenylimidazo[1,2-α]pyrazine molecule by ab initio HF and density functional methods.
    Sıdır İ; Sıdır YG; Kayagil İ
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):339-52. PubMed ID: 21782498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies.
    Li HZ; Hu LH; Tao W; Gao T; Li H; Lu YH; Su ZM
    Int J Mol Sci; 2012; 13(7):8051-8070. PubMed ID: 22942689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MP2, density functional theory, and molecular mechanical calculations of C-H...pi and hydrogen bond interactions in a cellulose-binding module-cellulose model system.
    Mohamed MN; Watts HD; Guo J; Catchmark JM; Kubicki JD
    Carbohydr Res; 2010 Aug; 345(12):1741-51. PubMed ID: 20580346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating protein-ligand binding with neural network potentials.
    Lahey SJ; Rowley CN
    Chem Sci; 2020 Jan; 11(9):2362-2368. PubMed ID: 34084397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FT-IR, FT-raman and UV spectra and ab initio HF and DFT study of conformational analysis, molecular structure and properties of ortho- meta- and para-chlorophenylboronic acid isomers.
    Uğurlu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124111. PubMed ID: 38457874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1-methoxynaphthalene.
    Govindarajan M; Ganasan K; Periandy S; Karabacak M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):646-53. PubMed ID: 21530378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.