BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38783325)

  • 1. scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data.
    Wang W; Cen Y; Lu Z; Xu Y; Sun T; Xiao Y; Liu W; Li JJ; Wang C
    Genome Biol; 2024 May; 25(1):136. PubMed ID: 38783325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of background noise and its removal on the analysis of single-cell expression data.
    Janssen P; Kliesmete Z; Vieth B; Adiconis X; Simmons S; Marshall J; McCabe C; Heyn H; Levin JZ; Enard W; Hellmann I
    Genome Biol; 2023 Jun; 24(1):140. PubMed ID: 37337297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decontamination of ambient RNA in single-cell RNA-seq with DecontX.
    Yang S; Corbett SE; Koga Y; Wang Z; Johnson WE; Yajima M; Campbell JD
    Genome Biol; 2020 Mar; 21(1):57. PubMed ID: 32138770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FastCAR: fast correction for ambient RNA to facilitate differential gene expression analysis in single-cell RNA-sequencing datasets.
    Berg M; Petoukhov I; van den Ende I; Meyer KB; Guryev V; Vonk JM; Carpaij O; Banchero M; Hendriks RW; van den Berge M; Nawijn MC
    BMC Genomics; 2023 Nov; 24(1):722. PubMed ID: 38030970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors.
    Slyper M; Porter CBM; Ashenberg O; Waldman J; Drokhlyansky E; Wakiro I; Smillie C; Smith-Rosario G; Wu J; Dionne D; Vigneau S; Jané-Valbuena J; Tickle TL; Napolitano S; Su MJ; Patel AG; Karlstrom A; Gritsch S; Nomura M; Waghray A; Gohil SH; Tsankov AM; Jerby-Arnon L; Cohen O; Klughammer J; Rosen Y; Gould J; Nguyen L; Hofree M; Tramontozzi PJ; Li B; Wu CJ; Izar B; Haq R; Hodi FS; Yoon CH; Hata AN; Baker SJ; Suvà ML; Bueno R; Stover EH; Clay MR; Dyer MA; Collins NB; Matulonis UA; Wagle N; Johnson BE; Rotem A; Rozenblatt-Rosen O; Regev A
    Nat Med; 2020 May; 26(5):792-802. PubMed ID: 32405060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Analysis of Single-Cell RNA-Seq Data.
    Alessandrì L; Cordero F; Beccuti M; Arigoni M; Calogero RA
    Methods Mol Biol; 2021; 2284():289-301. PubMed ID: 33835449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data.
    Young MD; Behjati S
    Gigascience; 2020 Dec; 9(12):. PubMed ID: 33367645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing biological signals and detection rates in single-cell RNA-seq experiments with cDNA library equalization.
    Bacher R; Chu LF; Argus C; Bolin JM; Knight P; Thomson JA; Stewart R; Kendziorski C
    Nucleic Acids Res; 2022 Jan; 50(2):e12. PubMed ID: 34850101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normalization of Single-Cell RNA-Seq Data.
    Risso D
    Methods Mol Biol; 2021; 2284():303-329. PubMed ID: 33835450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annotating cell types in human single-cell RNA-seq data with CellO.
    Bernstein MN; Dewey CN
    STAR Protoc; 2021 Sep; 2(3):100705. PubMed ID: 34458864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender.
    Fleming SJ; Chaffin MD; Arduini A; Akkad AD; Banks E; Marioni JC; Philippakis AA; Ellinor PT; Babadi M
    Nat Methods; 2023 Sep; 20(9):1323-1335. PubMed ID: 37550580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bias, robustness and scalability in single-cell differential expression analysis.
    Soneson C; Robinson MD
    Nat Methods; 2018 Apr; 15(4):255-261. PubMed ID: 29481549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information.
    Jew B; Alvarez M; Rahmani E; Miao Z; Ko A; Garske KM; Sul JH; Pietiläinen KH; Pajukanta P; Halperin E
    Nat Commun; 2020 Apr; 11(1):1971. PubMed ID: 32332754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BUTTERFLY: addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq.
    Gustafsson J; Robinson J; Nielsen J; Pachter L
    Genome Biol; 2021 Jun; 22(1):174. PubMed ID: 34103073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scSorter: assigning cells to known cell types according to marker genes.
    Guo H; Li J
    Genome Biol; 2021 Feb; 22(1):69. PubMed ID: 33618746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Comparison of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte Differentiation.
    Selewa A; Dohn R; Eckart H; Lozano S; Xie B; Gauchat E; Elorbany R; Rhodes K; Burnett J; Gilad Y; Pott S; Basu A
    Sci Rep; 2020 Jan; 10(1):1535. PubMed ID: 32001747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for executing and benchmarking eight computational doublet-detection methods in single-cell RNA sequencing data analysis.
    Xi NM; Li JJ
    STAR Protoc; 2021 Sep; 2(3):100699. PubMed ID: 34382023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in molecular sampling and data processing explain variation among single-cell and single-nucleus RNA-seq experiments.
    Chamberlin JT; Lee Y; Marth GT; Quinlan AR
    Genome Res; 2024 Mar; 34(2):179-188. PubMed ID: 38355308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.