BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38783325)

  • 41. PlacentaCellEnrich: A tool to characterize gene sets using placenta cell-specific gene enrichment analysis.
    Jain A; Tuteja G
    Placenta; 2021 Jan; 103():164-171. PubMed ID: 33137644
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-Cell RNA-seq: Introduction to Bioinformatics Analysis.
    Ji F; Sadreyev RI
    Curr Protoc Mol Biol; 2019 Jun; 127(1):e92. PubMed ID: 31237421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling.
    Liang Q; Dharmat R; Owen L; Shakoor A; Li Y; Kim S; Vitale A; Kim I; Morgan D; Liang S; Wu N; Chen K; DeAngelis MM; Chen R
    Nat Commun; 2019 Dec; 10(1):5743. PubMed ID: 31848347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. scLENS: data-driven signal detection for unbiased scRNA-seq data analysis.
    Kim H; Chang W; Chae SJ; Park JE; Seo M; Kim JK
    Nat Commun; 2024 Apr; 15(1):3575. PubMed ID: 38678050
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning.
    Wang B; Zhu J; Pierson E; Ramazzotti D; Batzoglou S
    Nat Methods; 2017 Apr; 14(4):414-416. PubMed ID: 28263960
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shaoxia: a web-based interactive analysis platform for single cell RNA sequencing data.
    Wei W; Xia X; Li T; Chen Q; Feng X
    BMC Genomics; 2024 Apr; 25(1):402. PubMed ID: 38658838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. OneStopRNAseq: A Web Application for Comprehensive and Efficient Analyses of RNA-Seq Data.
    Li R; Hu K; Liu H; Green MR; Zhu LJ
    Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33023248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
    Yang A; Troup M; Lin P; Ho JW
    Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data.
    Jia C; Hu Y; Kelly D; Kim J; Li M; Zhang NR
    Nucleic Acids Res; 2017 Nov; 45(19):10978-10988. PubMed ID: 29036714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prioritization of cell types responsive to biological perturbations in single-cell data with Augur.
    Squair JW; Skinnider MA; Gautier M; Foster LJ; Courtine G
    Nat Protoc; 2021 Aug; 16(8):3836-3873. PubMed ID: 34172974
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis.
    Guo M; Wang H; Potter SS; Whitsett JA; Xu Y
    PLoS Comput Biol; 2015 Nov; 11(11):e1004575. PubMed ID: 26600239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identifying Cell Subpopulations and Their Genetic Drivers from Single-Cell RNA-Seq Data Using a Biclustering Approach.
    Shi F; Huang H
    J Comput Biol; 2017 Jul; 24(7):663-674. PubMed ID: 28657835
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FRMC: a fast and robust method for the imputation of scRNA-seq data.
    Wu H; Wang X; Chu M; Xiang R; Zhou K
    RNA Biol; 2021 Oct; 18(sup1):172-181. PubMed ID: 34459719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Valid Post-clustering Differential Analysis for Single-Cell RNA-Seq.
    Zhang JM; Kamath GM; Tse DN
    Cell Syst; 2019 Oct; 9(4):383-392.e6. PubMed ID: 31521605
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-cell RNA sequencing data imputation using bi-level feature propagation.
    Lee J; Yun S; Kim Y; Chen T; Kellis M; Park C
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SiftCell: A robust framework to detect and isolate cell-containing droplets from single-cell RNA sequence reads.
    Xi J; Park SR; Lee JH; Kang HM
    Cell Syst; 2023 Jul; 14(7):620-628.e3. PubMed ID: 37473732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked Self Organizing Maps.
    Jansen C; Ramirez RN; El-Ali NC; Gomez-Cabrero D; Tegner J; Merkenschlager M; Conesa A; Mortazavi A
    PLoS Comput Biol; 2019 Nov; 15(11):e1006555. PubMed ID: 31682608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-Cell Transcriptome Analysis of T Cells.
    Van Der Byl W; Rizzetto S; Samir J; Cai C; Eltahla AA; Luciani F
    Methods Mol Biol; 2019; 2048():155-205. PubMed ID: 31396939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.