BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 38783842)

  • 21. Detoxification of lignocellulosic prehydrolyzate by lignin nanoparticles prepared from biorefinery biowaste to improve the ethanol production.
    Zhu J; Jiao N; Zhang H; Xu G; Xu Y
    Bioprocess Biosyst Eng; 2022 Jun; 45(6):1011-1018. PubMed ID: 35312864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an enzymatic cascade to systematically utilize lignocellulosic monosaccharide.
    Tang H; Chen Z; Shao Y; Ju X; Li L
    J Sci Food Agric; 2023 Mar; 103(4):1974-1980. PubMed ID: 36448581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.
    Andersen RL; Jensen KM; Mikkelsen MJ
    PLoS One; 2015; 10(8):e0136060. PubMed ID: 26295944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of alkali treatment on enzymatic hydrolysis of p-toluenesulfonic acid pretreated bamboo substrates.
    Wang M; Long J; Zhao J; Li Z
    Bioresour Technol; 2024 Mar; 396():130454. PubMed ID: 38360218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue.
    Ma CY; Xu LH; Sun Q; Sun SN; Cao XF; Wen JL; Yuan TQ
    Bioresour Technol; 2022 May; 352():127065. PubMed ID: 35351557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery.
    Galkin MV; Samec JS
    ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass.
    Das S; Chandukishore T; Ulaganathan N; Dhodduraj K; Gorantla SS; Chandna T; Gupta LK; Sahoo A; Atheena PV; Raval R; Anjana PA; DasuVeeranki V; Prabhu AA
    Int J Biol Macromol; 2024 May; 266(Pt 2):131290. PubMed ID: 38569993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient Fractionation of Lignin- and Ash-Rich Agricultural Residues Following Treatment With a Low-Cost Protic Ionic Liquid.
    Chambon CL; Chen M; Fennell PS; Hallett JP
    Front Chem; 2019; 7():246. PubMed ID: 31058135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fermentative valorisation of xylose-rich hemicellulosic hydrolysates from agricultural waste residues for lactic acid production under non-sterile conditions.
    Cox R; Narisetty V; Castro E; Agrawal D; Jacob S; Kumar G; Kumar D; Kumar V
    Waste Manag; 2023 Jul; 166():336-345. PubMed ID: 37209430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Apr; 109(4):894-903. PubMed ID: 22094883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Total utilization of lignin and carbohydrates in
    Chen X; Zhang K; Xiao LP; Sun RC; Song G
    Biotechnol Biofuels; 2020; 13():2. PubMed ID: 31921351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated Conversion of Lignocellulosic Biomass to Bio-Based Amphiphiles using a Functionalization-Defunctionalization Approach.
    Sun S; De Angelis G; Bertella S; Jones MJ; Dick GR; Amstad E; Luterbacher JS
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202312823. PubMed ID: 38010646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainable PHA production in integrated lignocellulose biorefineries.
    Dietrich K; Dumont MJ; Del Rio LF; Orsat V
    N Biotechnol; 2019 Mar; 49():161-168. PubMed ID: 30465907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alkaline and Alkaline-Oxidative Pretreatment and Hydrolysis of Herbaceous Biomass for Growth of Oleaginous Microbes.
    Crowe JD; Li M; Williams DL; Smith AD; Liu T; Hodge DB
    Methods Mol Biol; 2019; 1995():173-182. PubMed ID: 31148129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment.
    Ferreira JA; Taherzadeh MJ
    Bioresour Technol; 2020 Mar; 299():122695. PubMed ID: 31918973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin.
    Zhang K; Li H; Xiao LP; Wang B; Sun RC; Song G
    Bioresour Technol; 2019 Aug; 285():121335. PubMed ID: 31003204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate.
    Bradfield MF; Mohagheghi A; Salvachúa D; Smith H; Black BA; Dowe N; Beckham GT; Nicol W
    Biotechnol Biofuels; 2015; 8():181. PubMed ID: 26581168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrolysis of wheat straw hemicellulose with trifluoroacetic acid. Fermentation of xylose with Pachysolen tannophilus.
    Fanta GF; Abbott TP; Herman AI; Burr RC; Doane WM
    Biotechnol Bioeng; 1984 Sep; 26(9):1122-5. PubMed ID: 18553535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol.
    Moreno AD; Carbone A; Pavone R; Olsson L; Geijer C
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1405-1416. PubMed ID: 30498977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrated biorefinery process for co-production of xylose and glucose using maleic acid as efficient catalyst.
    Liu Z; Shi E; Ma F; Jiang K
    Bioresour Technol; 2021 Apr; 325():124698. PubMed ID: 33465645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.