BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38783844)

  • 1. Measurement of Water Uptake and States in Nafion Membranes Using Humidity-Controlled Terahertz Time-Domain Spectroscopy.
    Ludlam GAH; Gnaniah SJP; Degl'Innocenti R; Gupta G; Wain AJ; Lin H
    ACS Sustain Chem Eng; 2024 May; 12(20):7924-7934. PubMed ID: 38783844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity.
    Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes.
    Yin C; Li J; Zhou Y; Zhang H; Fang P; He C
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14026-14035. PubMed ID: 29620850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of water in Nafion using time-resolved Fourier transform infrared-attenuated total reflectance spectroscopy.
    Hallinan DT; Elabd YA
    J Phys Chem B; 2009 Apr; 113(13):4257-66. PubMed ID: 19320522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Sulfated Zirconia and Zirconium Phosphate Nanocomposite Membranes on Fuel-Cell Efficiency.
    Sigwadi R; Mokrani T; Msomi P; Nemavhola F
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes.
    Yin C; Wang L; Li J; Zhou Y; Zhang H; Fang P; He C
    Phys Chem Chem Phys; 2017 Jun; 19(24):15953-15961. PubMed ID: 28594029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton conductive nano-channel membranes based on polyaniline with phosphonic acid moieties for low relative humidity.
    Ghil LJ; Youn TY; Park NR; Rhee HW
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7912-5. PubMed ID: 24266163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, Thermal, and Gas-Transport Properties of Fe
    Mukaddam M; Wang Y; Pinnau I
    ACS Omega; 2018 Jul; 3(7):7474-7482. PubMed ID: 31458904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Time-Dependent Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy of a Powdered Specimen in a Controlled Atmosphere: Monitoring Sorption and Desorption of Water Vapor.
    Samokhvalov A; McCombs S
    Appl Spectrosc; 2023 Mar; 77(3):308-319. PubMed ID: 36526443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells.
    Taghizadeh MT; Vatanparast M
    J Colloid Interface Sci; 2016 Dec; 483():1-10. PubMed ID: 27544443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification.
    Muriithi B; Loy DA
    Membranes (Basel); 2016 Jan; 6(1):. PubMed ID: 26828525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New technology for the investigation of water vapor sorption-induced crystallographic form transformations of chemical compounds: a water vapor sorption gravimetry-dispersive Raman spectroscopy coupling.
    Feth MP; Jurascheck J; Spitzenberg M; Dillenz J; Bertele G; Stark H
    J Pharm Sci; 2011 Mar; 100(3):1080-92. PubMed ID: 20740677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of hydration of a Nafion membrane using APXPS and AIMD simulation.
    Liu C; Liu J; Han Y; Wang Z; Zhang H; Xie X; Yang B; Liu Z
    J Chem Phys; 2023 Feb; 158(7):071101. PubMed ID: 36813716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.
    Gadim TD; Figueiredo AG; Rosero-Navarro NC; Vilela C; Gamelas JA; Barros-Timmons A; Neto CP; Silvestre AJ; Freire CS; Figueiredo FM
    ACS Appl Mater Interfaces; 2014 May; 6(10):7864-75. PubMed ID: 24731218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermo-Optical Properties of Perfluorinated Sulfonic Acid Membranes: An Investigation of Hydration Based on Absorption Spectra.
    Dias DT; Lopes G; Ferreira T; Oliveira IL; Rosa CD
    Appl Spectrosc; 2017 Nov; 71(11):2504-2511. PubMed ID: 28707981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite polymer electrolytes for fuel cell applications: filler-induced effect on water sorption and transport properties.
    Mecheri B; Felice V; D'Epifanio A; Tavares AC; Licoccia S
    Chemphyschem; 2013 Nov; 14(16):3814-21. PubMed ID: 24106005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The proton conductivity and mechanical properties of Nafion®/ ZrP nanocomposite membrane.
    Sigwadi R; Dhlamini MS; Mokrani T; Ṋemavhola F; Nonjola PF; Msomi PF
    Heliyon; 2019 Aug; 5(8):e02240. PubMed ID: 31485507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and simulation of the water gradient within a Nafion membrane.
    Ozmaian M; Naghdabadi R
    Phys Chem Chem Phys; 2014 Feb; 16(7):3173-86. PubMed ID: 24406444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion and sorption of methanol and water in Nafion using time-resolved Fourier transform infrared-attenuated total reflectance spectroscopy.
    Hallinan DT; Elabd YA
    J Phys Chem B; 2007 Nov; 111(46):13221-30. PubMed ID: 17973419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the crystallisation of amorphous salbutamol sulphate using water vapour sorption and near infrared spectroscopy.
    Columbano A; Buckton G; Wikeley P
    Int J Pharm; 2002 Apr; 237(1-2):171-8. PubMed ID: 11955815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.