These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 38783925)
41. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria. Pal R; Hameed S; Fatima Z Biometals; 2019 Feb; 32(1):49-63. PubMed ID: 30430296 [TBL] [Abstract][Full Text] [Related]
42. Nano-Drug Delivery Systems: Possible End to the Rising Threats of Tuberculosis. Sheikh BA; Bhat BA; Alshehri B; Mir RA; Mir WR; Parry ZA; Mir MA J Biomed Nanotechnol; 2021 Dec; 17(12):2298-2318. PubMed ID: 34974855 [TBL] [Abstract][Full Text] [Related]
43. Current nanotechnological strategies using lipids, carbohydrates, proteins and metal conjugates-based carrier systems for diagnosis and treatment of tuberculosis - A review. Usharani N; Kanth SV; Saravanan N Int J Biol Macromol; 2023 Feb; 227():262-272. PubMed ID: 36521715 [TBL] [Abstract][Full Text] [Related]
44. Rifampicin Resistance Pattern of Mycobacterium tuberculosis Infection in Tertiary Care Hospital Settings. Ranganathan A; Carmelin DS; Muthusamy R Cureus; 2024 Mar; 16(3):e55755. PubMed ID: 38586690 [TBL] [Abstract][Full Text] [Related]
45. Antituberculosis Targeted Drug Delivery as a Potential Future Treatment Approach. Mazlan MKN; Mohd Tazizi MHD; Ahmad R; Noh MAA; Bakhtiar A; Wahab HA; Mohd Gazzali A Antibiotics (Basel); 2021 Jul; 10(8):. PubMed ID: 34438958 [No Abstract] [Full Text] [Related]
47. Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation. Ahmed S; Raqib R; Guðmundsson GH; Bergman P; Agerberth B; Rekha RS Antibiotics (Basel); 2020 Jan; 9(1):. PubMed ID: 31936156 [TBL] [Abstract][Full Text] [Related]
48. Advances in Diagnostics and Drug Discovery against Resistant and Latent Tuberculosis Infection. Shleider Carnero Canales C; Marquez Cazorla J; Furtado Torres AH; Monteiro Filardi ET; Di Filippo LD; Costa PI; Roque-Borda CA; Pavan FR Pharmaceutics; 2023 Sep; 15(10):. PubMed ID: 37896169 [TBL] [Abstract][Full Text] [Related]
49. Baicalein Suppresses NLRP3 and AIM2 Inflammasome-Mediated Pyroptosis in Macrophages Infected by Mycobacterium tuberculosis via Induced Autophagy. Ning B; Shen J; Liu F; Zhang H; Jiang X Microbiol Spectr; 2023 Jun; 11(3):e0471122. PubMed ID: 37125940 [TBL] [Abstract][Full Text] [Related]
50. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Miotto P; Zhang Y; Cirillo DM; Yam WC Respirology; 2018 Dec; 23(12):1098-1113. PubMed ID: 30189463 [TBL] [Abstract][Full Text] [Related]
51. The Use of Viral Vectors for Gene Therapy and Vaccination in Tuberculosis. Mata-Espinosa D; Lara-Espinosa JV; Barrios-Payán J; Hernández-Pando R Pharmaceuticals (Basel); 2023 Oct; 16(10):. PubMed ID: 37895946 [TBL] [Abstract][Full Text] [Related]
52. Drug targets in dormant Mycobacterium tuberculosis: can the conquest against tuberculosis become a reality? Gupta VK; Kumar MM; Singh D; Bisht D; Sharma S Infect Dis (Lond); 2018 Feb; 50(2):81-94. PubMed ID: 28933243 [TBL] [Abstract][Full Text] [Related]
53. Identification of Xiong XS; Zhang XD; Yan JW; Huang TT; Liu ZZ; Li ZK; Wang L; Li F Infect Drug Resist; 2024; 17():1491-1506. PubMed ID: 38628245 [TBL] [Abstract][Full Text] [Related]
54. Rapid molecular tests for tuberculosis and tuberculosis drug resistance: a qualitative evidence synthesis of recipient and provider views. Engel N; Ochodo EA; Karanja PW; Schmidt BM; Janssen R; Steingart KR; Oliver S Cochrane Database Syst Rev; 2022 Apr; 4(4):CD014877. PubMed ID: 35470432 [TBL] [Abstract][Full Text] [Related]
55. Study protocol for safety and efficacy of all-oral shortened regimens for multidrug-resistant tuberculosis: a multicenter randomized withdrawal trial and a single-arm trial [SEAL-MDR]. Fu L; Xiong J; Wang H; Zhang P; Yang Q; Cai Y; Wang W; Sun F; Zhang X; Wang Z; Chen X; Zhang W; Deng G BMC Infect Dis; 2023 Nov; 23(1):834. PubMed ID: 38012543 [TBL] [Abstract][Full Text] [Related]
56. Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets. Vashisht R; Bhat AG; Kushwaha S; Bhardwaj A; ; Brahmachari SK J Transl Med; 2014 Oct; 12():263. PubMed ID: 25304862 [TBL] [Abstract][Full Text] [Related]
57. Artemisia annua and Artemisia afra extracts exhibit strong bactericidal activity against Mycobacterium tuberculosis. Martini MC; Zhang T; Williams JT; Abramovitch RB; Weathers PJ; Shell SS J Ethnopharmacol; 2020 Nov; 262():113191. PubMed ID: 32730878 [TBL] [Abstract][Full Text] [Related]
58. Adapting Clofazimine for Treatment of Cutaneous Tuberculosis by Using Self-Double-Emulsifying Drug Delivery Systems. van Staden D; Haynes RK; Viljoen JM Antibiotics (Basel); 2022 Jun; 11(6):. PubMed ID: 35740212 [TBL] [Abstract][Full Text] [Related]
59. [Prospects for development of new antituberculous drugs]. Tomioka H Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850 [TBL] [Abstract][Full Text] [Related]
60. Toward a Phage Cocktail for Tuberculosis: Susceptibility and Tuberculocidal Action of Mycobacteriophages against Diverse Mycobacterium tuberculosis Strains. Guerrero-Bustamante CA; Dedrick RM; Garlena RA; Russell DA; Hatfull GF mBio; 2021 May; 12(3):. PubMed ID: 34016711 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]