BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38784034)

  • 1. Transcriptomic point of departure determination: a comparison of distribution-based and gene set-based approaches.
    Costa E; Johnson KJ; Walker CA; O'Brien JM
    Front Genet; 2024; 15():1374791. PubMed ID: 38784034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure.
    Johnson KJ; Auerbach SS; Costa E
    Toxicol Sci; 2020 Jul; 176(1):86-102. PubMed ID: 32384157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing Variability and Uncertainty Associated with Transcriptomic Dose-Response Modeling.
    Ewald JD; Basu N; Crump D; Boulanger E; Head J
    Environ Sci Technol; 2022 Nov; 56(22):15960-15968. PubMed ID: 36268973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic Points of Departure Calculated from Rainbow Trout Gill, Liver, and Gut Cell Lines Exposed to Methylmercury and Fluoxetine.
    Mittal K; Ewald J; Basu N
    Environ Toxicol Chem; 2022 Aug; 41(8):1982-1992. PubMed ID: 35622055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Qualitative and quantitative concentration-response modelling of gene co-expression networks to unlock hepatotoxic mechanisms for next generation chemical safety assessment.
    Kunnen SJ; Arnesdotter E; Willenbockel CT; Vinken M; van de Water B
    ALTEX; 2024; 41(2):213-232. PubMed ID: 38376873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the effects of experimental parameters and data modeling approaches on in vitro transcriptomic point-of-departure estimates.
    Harrill JA; Everett LJ; Haggard DE; Bundy JL; Willis CM; Shah I; Friedman KP; Basili D; Middleton A; Judson RS
    Toxicology; 2024 Jan; 501():153694. PubMed ID: 38043774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From vision toward best practices: Evaluating
    Reardon AJF; Farmahin R; Williams A; Meier MJ; Addicks GC; Yauk CL; Matteo G; Atlas E; Harrill J; Everett LJ; Shah I; Judson R; Ramaiahgari S; Ferguson SS; Barton-Maclaren TS
    Front Toxicol; 2023; 5():1194895. PubMed ID: 37288009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic points of departure calculated from human intestinal cells exposed to dietary nanoparticles.
    Xu K; Mittal K; Ewald J; Rulli S; Jakubowski JL; George S; Basu N
    Food Chem Toxicol; 2022 Dec; 170():113501. PubMed ID: 36341864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microRNA or messenger RNA point of departure estimates an apical endpoint point of departure in a rat developmental toxicity model.
    Johnson KJ; Costa E; Marshall V; Sriram S; Venkatraman A; Stebbins K; LaRocca J
    Birth Defects Res; 2022 Jul; 114(11):559-576. PubMed ID: 35596682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot testing and optimization of a larval fathead minnow high throughput transcriptomics assay.
    Villeneuve DL; Le M; Hazemi M; Biales A; Bencic DC; Bush K; Flick R; Martinson J; Morshead M; Rodriguez KS; Vitense K; Flynn K
    Curr Res Toxicol; 2023; 4():100099. PubMed ID: 36619288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based QSAR Models to Predict Repeat Dose Toxicity Points of Departure.
    Pradeep P; Friedman KP; Judson R
    Comput Toxicol; 2020 Nov; 16(November 2020):. PubMed ID: 34017928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Genomics Platform and Statistical Filtering on Transcriptional Benchmark Doses (BMD) and Multiple Approaches for Selection of Chemical Point of Departure (PoD).
    Webster AF; Chepelev N; Gagné R; Kuo B; Recio L; Williams A; Yauk CL
    PLoS One; 2015; 10(8):e0136764. PubMed ID: 26313361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Far from Their Origins: A Transcriptomic Investigation on How 2,4-Di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl) Phenol Affects Rainbow Trout Alevins.
    Eriksson ANM; Dubiel J; Alcaraz AJ; Doering JA; Wiseman S
    Environ Toxicol Chem; 2024 Jun; ():. PubMed ID: 38923588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term toxicogenomics as an alternative approach to chronic in vivo studies for derivation of points of departure: A case study in the rat with a triazole fungicide.
    LaRocca J; Costa E; Sriram S; Hannas BR; Johnson KJ
    Regul Toxicol Pharmacol; 2020 Jun; 113():104655. PubMed ID: 32268158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations.
    Dearfield KL; Gollapudi BB; Bemis JC; Benz RD; Douglas GR; Elespuru RK; Johnson GE; Kirkland DJ; LeBaron MJ; Li AP; Marchetti F; Pottenger LH; Rorije E; Tanir JY; Thybaud V; van Benthem J; Yauk CL; Zeiger E; Luijten M
    Environ Mol Mutagen; 2017 Jun; 58(5):264-283. PubMed ID: 27650663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment.
    Farmahin R; Williams A; Kuo B; Chepelev NL; Thomas RS; Barton-Maclaren TS; Curran IH; Nong A; Wade MG; Yauk CL
    Arch Toxicol; 2017 May; 91(5):2045-2065. PubMed ID: 27928627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rat subchronic study transcriptional point of departure estimates a carcinogenicity study apical point of departure.
    Bianchi E; Costa E; Yan ZJ; Murphy L; Howell J; Anderson D; Mukerji P; Venkatraman A; Terry C; Johnson KJ
    Food Chem Toxicol; 2021 Jan; 147():111869. PubMed ID: 33217531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.