These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38784413)

  • 1. Tailoring the active phase of CoO-based thin-film catalysts in order to tune selectivity in CO
    Mohammadpour N; Kierzkowska-Pawlak H; Balcerzak J; Tyczkowski J
    RSC Adv; 2024 May; 14(24):16758-16764. PubMed ID: 38784413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small Cobalt Nanoparticles Favor Reverse Water-Gas Shift Reaction Over Methanation Under CO
    Zhou X; Price GA; Sunley GJ; Copéret C
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202314274. PubMed ID: 37955591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the reaction mechanism behind CoO as active phase for CO
    Have ICT; Kromwijk JJG; Monai M; Ferri D; Sterk EB; Meirer F; Weckhuysen BM
    Nat Commun; 2022 Jan; 13(1):324. PubMed ID: 35031615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation.
    Melaet G; Ralston WT; Li CS; Alayoglu S; An K; Musselwhite N; Kalkan B; Somorjai GA
    J Am Chem Soc; 2014 Feb; 136(6):2260-3. PubMed ID: 24460136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivariate Bayesian Optimization of CoO Nanoparticles for CO
    Karadaghi LR; Williamson EM; To AT; Forsberg AP; Crans KD; Perkins CL; Hayden SC; LiBretto NJ; Baddour FG; Ruddy DA; Malmstadt N; Habas SE; Brutchey RL
    J Am Chem Soc; 2024 May; 146(20):14246-14259. PubMed ID: 38728108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sheet-Like Morphology CuO/Co
    Sheng Z; Zhou H; Zhang Y; Li J; Wang L
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Active Oxygen Evolution on Carbon Fiber Paper Coated with Atomic-Layer-Deposited Cobalt Oxide.
    Choi HJ; Han GD; Bae K; Shim JH
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10608-10615. PubMed ID: 30799602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO
    Konsolakis M; Lykaki M; Stefa S; Carabineiro SAC; Varvoutis G; Papista E; Marnellos GE
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31817667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Synergistic Co/CoO Interface to Enhance Hydrogenation Activity of Ethyl Lactate to 1,2-Propanediol.
    Li C; Wang J; Zhao J; Gao G; Wu KH; Su BJ; Chen JM; Xi Y; Huang Z; Qiao Y; Li F
    Chem Asian J; 2024 Mar; 19(6):e202301103. PubMed ID: 38288641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Reduction of CO
    Yin G; Yuan X; Du X; Zhao W; Bi Q; Huang F
    Chemistry; 2018 Feb; 24(9):2157-2163. PubMed ID: 29205557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning CO
    Reddy KP; Kim D; Hong S; Kim KJ; Ryoo R; Park JY
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36763569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance.
    Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM
    J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WGS catalysis and in situ studies of CoO(1-x), PtCo(n)/Co3O4, and Pt(m)Co(m')/CoO(1-x) nanorod catalysts.
    Zhang S; Shan JJ; Zhu Y; Frenkel AI; Patlolla A; Huang W; Yoon SJ; Wang L; Yoshida H; Takeda S; Tao FF
    J Am Chem Soc; 2013 Jun; 135(22):8283-93. PubMed ID: 23611190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the selectivity of the CO
    Wang J; Liu K; Zhao J; Li X; Yin B; Jiang B; Li H
    RSC Adv; 2024 Feb; 14(10):6502-6507. PubMed ID: 38390506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling of CO
    Heine C; Lechner BA; Bluhm H; Salmeron M
    J Am Chem Soc; 2016 Oct; 138(40):13246-13252. PubMed ID: 27599672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Optimization of Promoter and Support for Co-based/zeolites Catalysts in Catalytic Reduction of NO
    Pan H; Jian YF; Chen NN; Liu HX; He C; He YF
    Huan Jing Ke Xue; 2017 Jul; 38(7):3085-3094. PubMed ID: 29964653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Active Sites for High CO Selectivity during CO
    Galhardo TS; Braga AH; Arpini BH; Szanyi J; Gonçalves RV; Zornio BF; Miranda CR; Rossi LM
    J Am Chem Soc; 2021 Mar; 143(11):4268-4280. PubMed ID: 33661617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure Sensitivity of CO
    Simons JFM; de Heer TJ; van de Poll RCJ; Muravev V; Kosinov N; Hensen EJM
    J Am Chem Soc; 2023 Sep; 145(37):20289-20301. PubMed ID: 37677099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Ni-based catalysts for low-temperature reverse water-gas shift (RWGS) reaction.
    Deng L; Ai X; Xie F; Zhou G
    Chem Asian J; 2021 Apr; 16(8):949-958. PubMed ID: 33646609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Dioxide Reduction with Hydrogen on Fe, Co Supported Alumina and Carbon Catalysts under Supercritical Conditions.
    Bogdan VI; Koklin AE; Kustov AL; Pokusaeva YA; Bogdan TV; Kustov LM
    Molecules; 2021 May; 26(10):. PubMed ID: 34068056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.