These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38784468)

  • 1. Systematic generation and analysis of counterfactuals for compound activity predictions using multi-task models.
    Lamens A; Bajorath J
    RSC Med Chem; 2024 May; 15(5):1547-1555. PubMed ID: 38784468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Molecular Counterfactuals for Explainable Machine Learning Based on Core-Substituent Recombination.
    Lamens A; Bajorath J
    ChemMedChem; 2024 Feb; 19(3):e202300586. PubMed ID: 37983655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values.
    Lamens A; Bajorath J
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Perspective on Explanations of Molecular Prediction Models.
    Wellawatte GP; Gandhi HA; Seshadri A; White AD
    J Chem Theory Comput; 2023 Apr; 19(8):2149-2160. PubMed ID: 36972469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of model-agnostic explainable artificial intelligence frameworks in oncology: a narrative review.
    Ladbury C; Zarinshenas R; Semwal H; Tam A; Vaidehi N; Rodin AS; Liu A; Glaser S; Salgia R; Amini A
    Transl Cancer Res; 2022 Oct; 11(10):3853-3868. PubMed ID: 36388027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in learning characteristics between support vector machine and random forest models for compound classification revealed by Shapley value analysis.
    Siemers FM; Bajorath J
    Sci Rep; 2023 Apr; 13(1):5983. PubMed ID: 37045972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explainable Machine Learning for Property Predictions in Compound Optimization.
    Rodríguez-Pérez R; Bajorath J
    J Med Chem; 2021 Dec; 64(24):17744-17752. PubMed ID: 34902252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2020 Oct; 34(10):1013-1026. PubMed ID: 32361862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model agnostic generation of counterfactual explanations for molecules.
    Wellawatte GP; Seshadri A; White AD
    Chem Sci; 2022 Mar; 13(13):3697-3705. PubMed ID: 35432902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial cognition: How experimental psychology can help generate explainable artificial intelligence.
    Taylor JET; Taylor GW
    Psychon Bull Rev; 2021 Apr; 28(2):454-475. PubMed ID: 33159244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explainable artificial intelligence in forensics: Realistic explanations for number of contributor predictions of DNA profiles.
    Veldhuis MS; Ariëns S; Ypma RJF; Abeel T; Benschop CCG
    Forensic Sci Int Genet; 2022 Jan; 56():102632. PubMed ID: 34839075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explainability and white box in drug discovery.
    Kırboğa KK; Abbasi S; Küçüksille EU
    Chem Biol Drug Des; 2023 Jul; 102(1):217-233. PubMed ID: 37105727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence.
    Wani NA; Kumar R; Bedi J
    Comput Methods Programs Biomed; 2024 Jan; 243():107879. PubMed ID: 37897989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Mobile App That Addresses Interpretability Challenges in Machine Learning-Based Diabetes Predictions: Survey-Based User Study.
    Hendawi R; Li J; Roy S
    JMIR Form Res; 2023 Nov; 7():e50328. PubMed ID: 37955948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. To trust or not to trust an explanation: using LEAF to evaluate local linear XAI methods.
    Amparore E; Perotti A; Bajardi P
    PeerJ Comput Sci; 2021; 7():e479. PubMed ID: 33977131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of a prediction model for heart failure survival through explainable artificial intelligence.
    Moreno-Sánchez PA
    Front Cardiovasc Med; 2023; 10():1219586. PubMed ID: 37600061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward explainable AI (XAI) for mental health detection based on language behavior.
    Kerz E; Zanwar S; Qiao Y; Wiechmann D
    Front Psychiatry; 2023; 14():1219479. PubMed ID: 38144474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explainable Artificial Intelligence for Predictive Modeling in Healthcare.
    Yang CC
    J Healthc Inform Res; 2022 Jun; 6(2):228-239. PubMed ID: 35194568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomy of Potency Predictions Focusing on Structural Analogues with Increasing Potency Differences Including Activity Cliffs.
    Janela T; Bajorath J
    J Chem Inf Model; 2023 Nov; 63(22):7032-7044. PubMed ID: 37943257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel.
    Mastropietro A; Feldmann C; Bajorath J
    Sci Rep; 2023 Nov; 13(1):19561. PubMed ID: 37949930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.