These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38784727)

  • 1. Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products.
    Höing L; Sowa ST; Toplak M; Reinhardt JK; Jakob R; Maier T; Lill MA; Teufel R
    Chem Sci; 2024 May; 15(20):7749-7756. PubMed ID: 38784727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of Tropolones in Streptomyces spp.: Interweaving Biosynthesis and Degradation of Phenylacetic Acid and Hydroxylations on the Tropone Ring.
    Chen X; Xu M; Lü J; Xu J; Wang Y; Lin S; Deng Z; Tao M
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial Tropone Natural Products and Derivatives: Overview of their Biosynthesis, Bioactivities, Ecological Role and Biotechnological Potential.
    Duan Y; Petzold M; Saleem-Batcha R; Teufel R
    Chembiochem; 2020 Sep; 21(17):2384-2407. PubMed ID: 32239689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Flavoprotein Dioxygenase Steers Bacterial Tropone Biosynthesis via Coenzyme A-Ester Oxygenolysis and Ring Epoxidation.
    Duan Y; Toplak M; Hou A; Brock NL; Dickschat JS; Teufel R
    J Am Chem Soc; 2021 Jul; 143(27):10413-10421. PubMed ID: 34196542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shunting Phenylacetic Acid Catabolism for Tropone Biosynthesis.
    Li Y; Wang M; Zhao Q; Shen X; Wang J; Yan Y; Sun X; Yuan Q
    ACS Synth Biol; 2019 Apr; 8(4):876-883. PubMed ID: 30861343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products.
    Toplak M; Teufel R
    Biochemistry; 2022 Jan; 61(2):47-56. PubMed ID: 34962769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An acetyltransferase controls the metabolic flux in rubromycin polyketide biosynthesis by direct modulation of redox tailoring enzymes.
    Toplak M; Nagel A; Frensch B; Lechtenberg T; Teufel R
    Chem Sci; 2022 Jun; 13(24):7157-7164. PubMed ID: 35799824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Gene
    Wang P; Xiao Y; Gao D; Long Y; Xie Z
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of Ditropolonyl Sulfide, an Antibacterial Compound Produced by Burkholderia cepacia Complex Strain R-12632.
    Depoorter E; Coenye T; Vandamme P
    Appl Environ Microbiol; 2021 Oct; 87(22):e0116921. PubMed ID: 34524894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the TetR-Type Regulator PaaR in the Regulation of Pristinamycin I Biosynthesis through an Effect on Precursor Supply in Streptomyces pristinaespiralis.
    Zhao Y; Feng R; Zheng G; Tian J; Ruan L; Ge M; Jiang W; Lu Y
    J Bacteriol; 2015 Jun; 197(12):2062-71. PubMed ID: 25868645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoenzymatic Total Synthesis of Natural Products.
    Chakrabarty S; Romero EO; Pyser JB; Yazarians JA; Narayan ARH
    Acc Chem Res; 2021 Mar; 54(6):1374-1384. PubMed ID: 33600149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Mechanistic Basis of an Oxepin-CoA Forming Isomerase in Bacterial Primary and Secondary Metabolism.
    Spieker M; Saleem-Batcha R; Teufel R
    ACS Chem Biol; 2019 Dec; 14(12):2876-2886. PubMed ID: 31689071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-coa catabolon.
    García B; Olivera ER; Miñambres B; Fernández-Valverde M; Cañedo LM; Prieto MA; García JL; Martínez M; Luengo JM
    J Biol Chem; 1999 Oct; 274(41):29228-41. PubMed ID: 10506180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergence of Classical and C-Ring-Cleaved Angucyclines: Elucidation of Early Tailoring Steps in Lugdunomycin and Thioangucycline Biosynthesis.
    Nuutila A; Xiao X; van der Heul HU; van Wezel GP; Dinis P; Elsayed SS; Metsä-Ketelä M
    ACS Chem Biol; 2024 May; 19(5):1131-1141. PubMed ID: 38668630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of Lincosamide Antibiotics: Reactions Associated with Degradation and Detoxification Pathways Play a Constructive Role.
    Zhang D; Tang Z; Liu W
    Acc Chem Res; 2018 Jun; 51(6):1496-1506. PubMed ID: 29792672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling of Overactivated Acyls by a Type II Thioesterase during Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882.
    Wu H; Liang J; Gou L; Wu Q; Liang WJ; Zhou X; Bruce IJ; Deng Z; Wang Z
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibacterial activity of selected tropones and tropolones.
    Saleh NA; Zwiefak A; Mordarski M; Pulverer G
    Zentralbl Bakteriol Mikrobiol Hyg A; 1988 Nov; 270(1-2):160-70. PubMed ID: 3223137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the mechanism of ring hydrolysis in phenylacetate degradation: a metabolic branching point.
    Teufel R; Gantert C; Voss M; Eisenreich W; Haehnel W; Fuchs G
    J Biol Chem; 2011 Apr; 286(13):11021-34. PubMed ID: 21296885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon.
    Olivera ER; Miñambres B; García B; Muñiz C; Moreno MA; Ferrández A; Díaz E; García JL; Luengo JM
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6419-24. PubMed ID: 9600981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in structural and functional study of the bacterial phenylacetic acid catabolic pathway, its role in pathogenicity and antibiotic resistance.
    Jiao M; He W; Ouyang Z; Shi Q; Wen Y
    Front Microbiol; 2022; 13():964019. PubMed ID: 36160191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.