These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 38785001)
1. Time Series Forecasting of Cardiovascular Mortality: Machine Learning Based on State Economic and Local Medical Data. Gebel G; Metsker O; Fedorenko A; Yakovlev A; Zvartau NE; Kopanitsa G Stud Health Technol Inform; 2024 May; 314():42-46. PubMed ID: 38785001 [TBL] [Abstract][Full Text] [Related]
2. [The Social Economic Factors and Models of Forecasting Mortality Because of Cardiovascular Diseases]. Artamonova GV; Tabakaiev MV; Maksimov SA; Barbarash LS Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med; 2018 Jul; 26(4):221-225. PubMed ID: 30365272 [TBL] [Abstract][Full Text] [Related]
3. Advancing Cardiovascular Mortality Trend Analysis: A Machine Learning Approach to Predict Future Health Policy Needs. Feretzakis G; Theodorakis N; Vamvakou G; Hitas C; Anagnostou D; Kalantzi S; Spyridaki A; Kollia Z; Christodoulou M; Kalles D; Gkontzis AF; Verykios VS; Nikolaou M Stud Health Technol Inform; 2024 Aug; 316():868-872. PubMed ID: 39176930 [TBL] [Abstract][Full Text] [Related]
4. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. Dinh A; Miertschin S; Young A; Mohanty SD BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707 [TBL] [Abstract][Full Text] [Related]
5. Explainable artificial intelligence (XAI) for exploring spatial variability of lung and bronchus cancer (LBC) mortality rates in the contiguous USA. Ahmed ZU; Sun K; Shelly M; Mu L Sci Rep; 2021 Dec; 11(1):24090. PubMed ID: 34916529 [TBL] [Abstract][Full Text] [Related]
6. A proposed tree-based explainable artificial intelligence approach for the prediction of angina pectoris. Guldogan E; Yagin FH; Pinar A; Colak C; Kadry S; Kim J Sci Rep; 2023 Dec; 13(1):22189. PubMed ID: 38092844 [TBL] [Abstract][Full Text] [Related]
7. A reproducible ensemble machine learning approach to forecast dengue outbreaks. Sebastianelli A; Spiller D; Carmo R; Wheeler J; Nowakowski A; Jacobson LV; Kim D; Barlevi H; Cordero ZER; Colón-González FJ; Lowe R; Ullo SL; Schneider R Sci Rep; 2024 Feb; 14(1):3807. PubMed ID: 38360915 [TBL] [Abstract][Full Text] [Related]
8. Applying Machine Learning Models with An Ensemble Approach for Accurate Real-Time Influenza Forecasting in Taiwan: Development and Validation Study. Cheng HY; Wu YC; Lin MH; Liu YL; Tsai YY; Wu JH; Pan KH; Ke CJ; Chen CM; Liu DP; Lin IF; Chuang JH J Med Internet Res; 2020 Aug; 22(8):e15394. PubMed ID: 32755888 [TBL] [Abstract][Full Text] [Related]
9. Predictive analytics for cardiovascular patient readmission and mortality: An explainable approach. Huberts LCE; Li S; Blake V; Jorm L; Yu J; Ooi SY; Gallego B Comput Biol Med; 2024 May; 174():108321. PubMed ID: 38626511 [TBL] [Abstract][Full Text] [Related]
10. [Cardiovascular Diseases in the Context of Russia's Long-Term Socio-Economic Development Priorities]. Saygitov RT; Chulok AA Vestn Ross Akad Med Nauk; 2015; (3):286-99. PubMed ID: 26495716 [TBL] [Abstract][Full Text] [Related]
11. An enhanced drought forecasting in coastal arid regions using deep learning approach with evaporation index. Al Moteri M; Alrowais F; Mtouaa W; Aljehane NO; Alotaibi SS; Marzouk R; Mustafa Hilal A; Ahmed NA Environ Res; 2024 Apr; 246():118171. PubMed ID: 38215925 [TBL] [Abstract][Full Text] [Related]
12. Cardiovascular disease (CVD) outcomes and associated risk factors in a medicare population without prior CVD history: an analysis using statistical and machine learning algorithms. Lip GYH; Genaidy A; Estes C Intern Emerg Med; 2023 Aug; 18(5):1373-1383. PubMed ID: 37296355 [TBL] [Abstract][Full Text] [Related]
13. An ensemble learning based hybrid model and framework for air pollution forecasting. Chang YS; Abimannan S; Chiao HT; Lin CY; Huang YP Environ Sci Pollut Res Int; 2020 Oct; 27(30):38155-38168. PubMed ID: 32621183 [TBL] [Abstract][Full Text] [Related]
14. A robust framework for enhancing cardiovascular disease risk prediction using an optimized category boosting model. Qiu Z; Qiao Y; Shi W; Liu X Math Biosci Eng; 2024 Jan; 21(2):2943-2969. PubMed ID: 38454714 [TBL] [Abstract][Full Text] [Related]
15. Cognition-Enhanced Machine Learning for Better Predictions with Limited Data. Sense F; Wood R; Collins MG; Fiechter J; Wood A; Krusmark M; Jastrzembski T; Myers CW Top Cogn Sci; 2022 Oct; 14(4):739-755. PubMed ID: 34529347 [TBL] [Abstract][Full Text] [Related]
16. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
17. Develop a radiomics-based machine learning model to predict the stone-free rate post-percutaneous nephrolithotomy. Zou XC; Luo CW; Yuan RM; Jin MN; Zeng T; Chao HC Urolithiasis; 2024 Apr; 52(1):64. PubMed ID: 38613668 [TBL] [Abstract][Full Text] [Related]
18. Predicting COVID-19 mortality risk in Toronto, Canada: a comparison of tree-based and regression-based machine learning methods. Feng C; Kephart G; Juarez-Colunga E BMC Med Res Methodol; 2021 Nov; 21(1):267. PubMed ID: 34837951 [TBL] [Abstract][Full Text] [Related]
19. Machine-Learning-Derived Model for the Stratification of Cardiovascular risk in Patients with Ischemic Stroke. Ntaios G; Sagris D; Kallipolitis A; Karagkiozi E; Korompoki E; Manios E; Plagianakos V; Vemmos K; Maglogiannis I J Stroke Cerebrovasc Dis; 2021 Oct; 30(10):106018. PubMed ID: 34343838 [TBL] [Abstract][Full Text] [Related]
20. Application of machine learning algorithms to construct and validate a prediction model for coronary heart disease risk in patients with periodontitis: a population-based study. Wang Y; Ni B; Xiao Y; Lin Y; Jiang Y; Zhang Y Front Cardiovasc Med; 2023; 10():1296405. PubMed ID: 38094122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]