These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38785011)
1. Exploring Negated Entites for Named Entity Recognition in Italian Lung Cancer Clinical Reports. Paolo D; Bria A; Greco C; Russano M; Ramella S; Soda P; Sicilia R Stud Health Technol Inform; 2024 May; 314():98-102. PubMed ID: 38785011 [TBL] [Abstract][Full Text] [Related]
2. Neural negated entity recognition in Spanish electronic health records. Santiso S; Pérez A; Casillas A; Oronoz M J Biomed Inform; 2020 May; 105():103419. PubMed ID: 32298847 [TBL] [Abstract][Full Text] [Related]
3. Improving large language models for clinical named entity recognition via prompt engineering. Hu Y; Chen Q; Du J; Peng X; Keloth VK; Zuo X; Zhou Y; Li Z; Jiang X; Lu Z; Roberts K; Xu H J Am Med Inform Assoc; 2024 Sep; 31(9):1812-1820. PubMed ID: 38281112 [TBL] [Abstract][Full Text] [Related]
4. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
5. Automatic quantitative stroke severity assessment based on Chinese clinical named entity recognition with domain-adaptive pre-trained large language model. Gu Z; He X; Yu P; Jia W; Yang X; Peng G; Hu P; Chen S; Chen H; Lin Y Artif Intell Med; 2024 Apr; 150():102822. PubMed ID: 38553162 [TBL] [Abstract][Full Text] [Related]
6. Multi-head CRF classifier for biomedical multi-class named entity recognition on Spanish clinical notes. Jonker RAA; Almeida T; Antunes R; Almeida JR; Matos S Database (Oxford); 2024 Jul; 2024():. PubMed ID: 39083461 [TBL] [Abstract][Full Text] [Related]
7. Development and Validation of a Natural Language Processing Algorithm for Extracting Clinical and Pathological Features of Breast Cancer From Pathology Reports. Munzone E; Marra A; Comotto F; Guercio L; Sangalli CA; Lo Cascio M; Pagan E; Sangalli D; Bigoni I; Porta FM; D'Ercole M; Ritorti F; Bagnardi V; Fusco N; Curigliano G JCO Clin Cancer Inform; 2024 Aug; 8():e2400034. PubMed ID: 39137368 [TBL] [Abstract][Full Text] [Related]
8. Transformers for extracting breast cancer information from Spanish clinical narratives. Solarte-Pabón O; Montenegro O; García-Barragán A; Torrente M; Provencio M; Menasalvas E; Robles V Artif Intell Med; 2023 Sep; 143():102625. PubMed ID: 37673566 [TBL] [Abstract][Full Text] [Related]
9. Advancing Italian biomedical information extraction with transformers-based models: Methodological insights and multicenter practical application. Crema C; Buonocore TM; Fostinelli S; Parimbelli E; Verde F; Fundarò C; Manera M; Ramusino MC; Capelli M; Costa A; Binetti G; Bellazzi R; Redolfi A J Biomed Inform; 2023 Dec; 148():104557. PubMed ID: 38012982 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of clinical named entity recognition methods for Serbian electronic health records. Kaplar A; Stošović M; Kaplar A; Brković V; Naumović R; Kovačević A Int J Med Inform; 2022 Aug; 164():104805. PubMed ID: 35653828 [TBL] [Abstract][Full Text] [Related]
11. Automatic de-identification of French electronic health records: a cost-effective approach exploiting distant supervision and deep learning models. Azzouzi ME; Coatrieux G; Bellafqira R; Delamarre D; Riou C; Oubenali N; Cabon S; Cuggia M; Bouzillé G BMC Med Inform Decis Mak; 2024 Feb; 24(1):54. PubMed ID: 38365677 [TBL] [Abstract][Full Text] [Related]
12. Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction. Fabregat H; Duque A; Martinez-Romo J; Araujo L J Biomed Inform; 2023 Feb; 138():104279. PubMed ID: 36610608 [TBL] [Abstract][Full Text] [Related]
13. A novel Data and Model Centric artificial intelligence based approach in developing high-performance Named Entity Recognition for Bengali Language. Lima KA; Md Hasib K; Azam S; Karim A; Montaha S; Noori SRH; Jonkman M PLoS One; 2023; 18(9):e0287818. PubMed ID: 37738251 [TBL] [Abstract][Full Text] [Related]
14. Utility analysis and demonstration of real-world clinical texts: A case study on Japanese cancer-related EHRs. Yada S; Nishiyama T; Wakamiya S; Kawazoe Y; Imai S; Hori S; Aramaki E PLoS One; 2024; 19(9):e0310432. PubMed ID: 39259727 [TBL] [Abstract][Full Text] [Related]
15. Overview of the First Natural Language Processing Challenge for Extracting Medication, Indication, and Adverse Drug Events from Electronic Health Record Notes (MADE 1.0). Jagannatha A; Liu F; Liu W; Yu H Drug Saf; 2019 Jan; 42(1):99-111. PubMed ID: 30649735 [TBL] [Abstract][Full Text] [Related]
16. Extracting entities with attributes in clinical text via joint deep learning. Shi X; Yi Y; Xiong Y; Tang B; Chen Q; Wang X; Ji Z; Zhang Y; Xu H J Am Med Inform Assoc; 2019 Dec; 26(12):1584-1591. PubMed ID: 31550346 [TBL] [Abstract][Full Text] [Related]
17. Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques. Rubio-López I; Costumero R; Ambit H; Gonzalo-Martín C; Menasalvas E; Rodríguez González A Stud Health Technol Inform; 2017; 235():251-255. PubMed ID: 28423792 [TBL] [Abstract][Full Text] [Related]
18. A two-stage deep learning approach for extracting entities and relationships from medical texts. Suárez-Paniagua V; Rivera Zavala RM; Segura-Bedmar I; Martínez P J Biomed Inform; 2019 Nov; 99():103285. PubMed ID: 31546016 [TBL] [Abstract][Full Text] [Related]
19. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
20. Negation recognition in clinical natural language processing using a combination of the NegEx algorithm and a convolutional neural network. Argüello-González G; Aquino-Esperanza J; Salvador D; Bretón-Romero R; Del Río-Bermudez C; Tello J; Menke S BMC Med Inform Decis Mak; 2023 Oct; 23(1):216. PubMed ID: 37833661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]