These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38785011)

  • 21. Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network.
    Wu Y; Jiang M; Lei J; Xu H
    Stud Health Technol Inform; 2015; 216():624-8. PubMed ID: 26262126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Practical Implementation and Challenges of Artificial Intelligence-Driven Electronic Health Record Evaluation: Protected Health Information.
    Tashman AP
    Adv Chronic Kidney Dis; 2022 Sep; 29(5):427-430. PubMed ID: 36253025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conditional random fields for clinical named entity recognition: A comparative study using Korean clinical texts.
    Lee W; Kim K; Lee EY; Choi J
    Comput Biol Med; 2018 Oct; 101():7-14. PubMed ID: 30086416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Entity recognition from clinical texts via recurrent neural network.
    Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H
    BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracting important information from Chinese Operation Notes with natural language processing methods.
    Wang H; Zhang W; Zeng Q; Li Z; Feng K; Liu L
    J Biomed Inform; 2014 Apr; 48():130-6. PubMed ID: 24486562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records.
    Li L; Zhao J; Hou L; Zhai Y; Shi J; Cui F
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):235. PubMed ID: 31801540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records.
    Cai X; Dong S; Hu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases.
    Xu H; Fu Z; Shah A; Chen Y; Peterson NB; Chen Q; Mani S; Levy MA; Dai Q; Denny JC
    AMIA Annu Symp Proc; 2011; 2011():1564-72. PubMed ID: 22195222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical Named Entity Recognition from Chinese Electronic Medical Records Based on Deep Learning Pretraining.
    Gong L; Zhang Z; Chen S
    J Healthc Eng; 2020; 2020():8829219. PubMed ID: 33299537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supervised methods to extract clinical events from cardiology reports in Italian.
    Viani N; Miller TA; Napolitano C; Priori SG; Savova GK; Bellazzi R; Sacchi L
    J Biomed Inform; 2019 Jul; 95():103219. PubMed ID: 31150777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comprehensive study of named entity recognition in Chinese clinical text.
    Lei J; Tang B; Lu X; Gao K; Jiang M; Xu H
    J Am Med Inform Assoc; 2014; 21(5):808-14. PubMed ID: 24347408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chinese EMR Named Entity Recognition Using Fused Label Relations Based on Machine Reading Comprehension Framework.
    Duan J; Liu S; Liao X; Gong F; Yue H; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1143-1153. PubMed ID: 38470595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Language model based on deep learning network for biomedical named entity recognition.
    Hou G; Jian Y; Zhao Q; Quan X; Zhang H
    Methods; 2024 Jun; 226():71-77. PubMed ID: 38641084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leveraging Rule-Based NLP to Translate Textual Reports as Structured Inputs Automatically Processed by a Clinical Decision Support System.
    Redjdal A; Novikava N; Kempf E; Bouaud J; Seroussi B
    Stud Health Technol Inform; 2024 Aug; 316():1861-1865. PubMed ID: 39176854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Comprehensive Natural Language Processing Pipeline for the Chronic Lupus Disease.
    Lilli L; Bosello SL; Antenucci L; Patarnello S; Ortolan A; Lenkowicz J; Gorini M; Castellino G; Cesario A; D'Agostino MA; Masciocchi C
    Stud Health Technol Inform; 2024 Aug; 316():909-913. PubMed ID: 39176940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A weakly supervised method for named entity recognition of Chinese electronic medical records.
    Li M; Gao C; Zhang K; Zhou H; Ying J
    Med Biol Eng Comput; 2023 Oct; 61(10):2733-2743. PubMed ID: 37453978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NEAR: Named entity and attribute recognition of clinical concepts.
    Nath N; Lee SH; Lee I
    J Biomed Inform; 2022 Jun; 130():104092. PubMed ID: 35533990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.
    Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H
    J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing NER Approaches on French Clinical Text, with Easy-to-Reuse Pipelines.
    Hubert T; Vaillant G; Birot O; Arias C; Neuraz A; Coulet A
    Stud Health Technol Inform; 2024 Aug; 316():272-276. PubMed ID: 39176725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated SNOMED CT concept and attribute relationship detection through a web-based implementation of cTAKES.
    Kersloot MG; Lau F; Abu-Hanna A; Arts DL; Cornet R
    J Biomed Semantics; 2019 Sep; 10(1):14. PubMed ID: 31533810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.