These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38785552)

  • 41. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data.
    Shan X; Chen J; Dong K; Zhou W; Zhang S
    J Comput Biol; 2022 Jul; 29(7):650-663. PubMed ID: 35727094
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SMASH: Scalable Method for Analyzing Spatial Heterogeneity of genes in spatial transcriptomics data.
    Seal S; Bitler BG; Ghosh D
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Seq-Scope Protocol: Repurposing Illumina Sequencing Flow Cells for High-Resolution Spatial Transcriptomics.
    Kim Y; Cheng W; Cho CS; Hwang Y; Si Y; Park A; Schrank M; Hsu JE; Xi J; Kim M; Pedersen E; Koues OI; Wilson T; Jun G; Kang HM; Lee JH
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617262
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data.
    Jin S; Ramos R
    Biochem Soc Trans; 2022 Feb; 50(1):297-308. PubMed ID: 35191953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. STPDA: Leveraging spatial-temporal patterns for downstream analysis in spatial transcriptomic data.
    Shi M; Cheng X; Dai Y
    Comput Biol Chem; 2024 Jun; 112():108127. PubMed ID: 38870559
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics.
    Shen X; Zhao Y; Wang Z; Shi Q
    Lab Chip; 2022 Dec; 22(24):4774-4791. PubMed ID: 36254761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope.
    Wan X; Xiao J; Tam SST; Cai M; Sugimura R; Wang Y; Wan X; Lin Z; Wu AR; Yang C
    Nat Commun; 2023 Nov; 14(1):7848. PubMed ID: 38030617
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Emerging artificial intelligence applications in Spatial Transcriptomics analysis.
    Li Y; Stanojevic S; Garmire LX
    Comput Struct Biotechnol J; 2022; 20():2895-2908. PubMed ID: 35765645
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology.
    Zhang D; Schroeder A; Yan H; Yang H; Hu J; Lee MYY; Cho KS; Susztak K; Xu GX; Feldman MD; Lee EB; Furth EE; Wang L; Li M
    Nat Biotechnol; 2024 Jan; ():. PubMed ID: 38168986
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial Heterogeneity of Integrins and Their Ligands in Primary Breast Tumors.
    Tashireva L; Grigoryeva E; Alifanov V; Iamshchikov P; Zavyalova M; Perelmuter V
    Discov Med; 2023 Oct; 35(178):910-920. PubMed ID: 37811629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A hybrid SOM-SVM approach for the zebrafish gene expression analysis.
    Wu W; Liu X; Xu M; Peng JR; Setiono R
    Genomics Proteomics Bioinformatics; 2005 May; 3(2):84-93. PubMed ID: 16393145
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A hybrid machine learning and regression method for cell type deconvolution of spatial barcoding-based transcriptomic data.
    Liu Y; Li N; Qi J; Xu G; Zhao J; Wang N; Huang X; Jiang W; Justet A; Adams TS; Homer R; Amei A; Rosas IO; Kaminski N; Wang Z; Yan X
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SpatialcoGCN: deconvolution and spatial information-aware simulation of spatial transcriptomics data via deep graph co-embedding.
    Yin W; Wan Y; Zhou Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38557675
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.
    Inano R; Oishi N; Kunieda T; Arakawa Y; Yamao Y; Shibata S; Kikuchi T; Fukuyama H; Miyamoto S
    Neuroimage Clin; 2014; 5():396-407. PubMed ID: 25180159
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatial transcriptomics: recent developments and insights in respiratory research.
    Wang WJ; Chu LX; He LY; Zhang MJ; Dang KT; Gao C; Ge QY; Wang ZG; Zhao XW
    Mil Med Res; 2023 Aug; 10(1):38. PubMed ID: 37592342
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatially Resolved Transcriptomes of Mammalian Kidneys Illustrate the Molecular Complexity and Interactions of Functional Nephron Segments.
    Raghubar AM; Pham DT; Tan X; Grice LF; Crawford J; Lam PY; Andersen SB; Yoon S; Teoh SM; Matigian NA; Stewart A; Francis L; Ng MSY; Healy HG; Combes AN; Kassianos AJ; Nguyen Q; Mallett AJ
    Front Med (Lausanne); 2022; 9():873923. PubMed ID: 35872784
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SMaSH: a scalable, general marker gene identification framework for single-cell RNA-sequencing.
    Nelson ME; Riva SG; Cvejic A
    BMC Bioinformatics; 2022 Aug; 23(1):328. PubMed ID: 35941549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RECCIPE: A new framework assessing localized cell-cell interaction on gene expression in multicellular ST data.
    Ma W; Song X; Yuan GC; Wang P
    Front Genet; 2024; 15():1322886. PubMed ID: 38327830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.