These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38785610)
1. Stochastic Compartment Model with Mortality and Its Application to Epidemic Spreading in Complex Networks. Granger T; Michelitsch TM; Bestehorn M; Riascos AP; Collet BA Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785610 [TBL] [Abstract][Full Text] [Related]
2. A Markovian random walk model of epidemic spreading. Bestehorn M; Riascos AP; Michelitsch TM; Collet BA Contin Mech Thermodyn; 2021; 33(4):1207-1221. PubMed ID: 34776647 [TBL] [Abstract][Full Text] [Related]
3. Four-compartment epidemic model with retarded transition rates. Granger T; Michelitsch TM; Bestehorn M; Riascos AP; Collet BA Phys Rev E; 2023 Apr; 107(4-1):044207. PubMed ID: 37198844 [TBL] [Abstract][Full Text] [Related]
4. Epidemics of random walkers in metapopulation model for complete, cycle, and star graphs. Nagatani T; Ichinose G; Tainaka KI J Theor Biol; 2018 Aug; 450():66-75. PubMed ID: 29702109 [TBL] [Abstract][Full Text] [Related]
5. A random walk model for infection on graphs: spread of epidemics & rumours with mobile agents. Draief M; Ganesh A Discret Event Dyn Syst; 2011; 21(1):41-61. PubMed ID: 32214674 [TBL] [Abstract][Full Text] [Related]
6. Model for rumor spreading over networks. Trpevski D; Tang WK; Kocarev L Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056102. PubMed ID: 20866292 [TBL] [Abstract][Full Text] [Related]
7. Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks. Van Mieghem P; van de Bovenkamp R Phys Rev Lett; 2013 Mar; 110(10):108701. PubMed ID: 23521310 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of a susceptible-infected-recovered model on complex networks with interregional migration. Niu R; Chan YC; Wong EWM; van Wyk MA; Liu S Phys Rev E; 2024 Aug; 110(2-1):024304. PubMed ID: 39295009 [TBL] [Abstract][Full Text] [Related]
9. Spread of information and infection on finite random networks. Isham V; Kaczmarska J; Nekovee M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046128. PubMed ID: 21599261 [TBL] [Abstract][Full Text] [Related]
10. The large graph limit of a stochastic epidemic model on a dynamic multilayer network. Jacobsen KA; Burch MG; Tien JH; Rempała GA J Biol Dyn; 2018 Dec; 12(1):746-788. PubMed ID: 30175687 [TBL] [Abstract][Full Text] [Related]
11. First encounters on Watts-Strogatz networks and Barabási-Albert networks. Yuan Z; Chen Y; Gao L; Peng J Chaos; 2022 Dec; 32(12):123114. PubMed ID: 36587344 [TBL] [Abstract][Full Text] [Related]
12. A network SIRX model for the spreading of COVID-19. Dimou A; Maragakis M; Argyrakis P Physica A; 2022 Mar; 590():126746. PubMed ID: 34898823 [TBL] [Abstract][Full Text] [Related]
13. Community Detection Using Restrained Random-Walk Similarity. Okuda M; Satoh S; Sato Y; Kidawara Y IEEE Trans Pattern Anal Mach Intell; 2021 Jan; 43(1):89-103. PubMed ID: 31265385 [TBL] [Abstract][Full Text] [Related]
14. Assessing the impact of disease incidence and immunization on the resilience of complex networks during epidemics. Islam MDS; Sharif Ullah M; Kabir KMA Infect Dis Model; 2025 Mar; 10(1):1-27. PubMed ID: 39319286 [TBL] [Abstract][Full Text] [Related]
15. Mean encounter times for multiple random walkers on networks. Riascos AP; Sanders DP Phys Rev E; 2021 Apr; 103(4-1):042312. PubMed ID: 34005853 [TBL] [Abstract][Full Text] [Related]
16. Asymptotic entropy of the Gibbs state of complex networks. Glos A; Krawiec A; Pawela Ł Sci Rep; 2021 Jan; 11(1):311. PubMed ID: 33431960 [TBL] [Abstract][Full Text] [Related]
17. Epidemic spreading in random rectangular networks. Estrada E; Meloni S; Sheerin M; Moreno Y Phys Rev E; 2016 Nov; 94(5-1):052316. PubMed ID: 27967075 [TBL] [Abstract][Full Text] [Related]
18. Disease spreading in complex networks: A numerical study with Principal Component Analysis. Schimit PHT; Pereira FH Expert Syst Appl; 2018 May; 97():41-50. PubMed ID: 32288338 [TBL] [Abstract][Full Text] [Related]
19. Diffusive transport on networks with stochastic resetting to multiple nodes. González FH; Riascos AP; Boyer D Phys Rev E; 2021 Jun; 103(6-1):062126. PubMed ID: 34271672 [TBL] [Abstract][Full Text] [Related]
20. Microscopic edge-based compartmental modeling method for analyzing the susceptible-infected-recovered epidemic spreading on networks. Wu Q; Chen S Phys Rev E; 2021 Aug; 104(2-1):024306. PubMed ID: 34525574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]