These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38785665)

  • 1. Towards Multi-Objective Object Push-Grasp Policy Based on Maximum Entropy Deep Reinforcement Learning under Sparse Rewards.
    Zhang T; Mo H
    Entropy (Basel); 2024 May; 26(5):. PubMed ID: 38785665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on deep reinforcement learning basketball robot shooting skills improvement based on end to end architecture and multi-modal perception.
    Zhang J; Tao D
    Front Neurorobot; 2023; 17():1274543. PubMed ID: 37908406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient push-grasping for multiple target objects in clutter environments.
    Wu L; Chen Y; Li Z; Liu Z
    Front Neurorobot; 2023; 17():1188468. PubMed ID: 37250672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-stage grasp detection method for sequential robotic grasping in stacking scenarios.
    Zhang J; Yin B; Zhong Y; Wei Q; Zhao J; Bilal H
    Math Biosci Eng; 2024 Feb; 21(2):3448-3472. PubMed ID: 38454735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prehensile and Non-Prehensile Robotic Pick-and-Place of Objects in Clutter Using Deep Reinforcement Learning.
    Imtiaz MB; Qiao Y; Lee B
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF; Ludermir TB
    Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning.
    Yuan R; Dou J; Li J; Wang W; Jiang Y
    Math Biosci Eng; 2023 Jan; 20(2):1903-1918. PubMed ID: 36899514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Robot Grasping Based on Deep Learning for Real-Life Scenarios.
    Hu J; Li Q; Bai Q
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of news dissemination push mode by intelligent edge computing technology for deep learning.
    DeGe J; Sang S
    Sci Rep; 2024 Mar; 14(1):6671. PubMed ID: 38509163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Automated Object Grasping for Intelligent Prosthetic Hands Using Machine Learning.
    Odeyemi J; Ogbeyemi A; Wong K; Zhang W
    Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Stability and Performance in Mobile Robot Path Planning with PMR-Dueling DQN Algorithm.
    Deguale DA; Yu L; Sinishaw ML; Li K
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task Offloading Decision-Making Algorithm for Vehicular Edge Computing: A Deep-Reinforcement-Learning-Based Approach.
    Shi W; Chen L; Zhu X
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GR-ConvNet v2: A Real-Time Multi-Grasp Detection Network for Robotic Grasping.
    Kumra S; Joshi S; Sahin F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W; Xiang Z; Fang H; Huo K; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Contour-following via Haptic Perception and Reinforcement Learning.
    Hellman RB; Tekin C; van der Schaar M; Santos VJ
    IEEE Trans Haptics; 2018; 11(1):61-72. PubMed ID: 28922126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Agent Decision-Making Modes in Uncertain Interactive Traffic Scenarios via Graph Convolution-Based Deep Reinforcement Learning.
    Gao X; Li X; Liu Q; Li Z; Yang F; Luan T
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keypoint-Based Robotic Grasp Detection Scheme in Multi-Object Scenes.
    Li T; Wang F; Ru C; Jiang Y; Li J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double Sparse Deep Reinforcement Learning via Multilayer Sparse Coding and Nonconvex Regularized Pruning.
    Zhao H; Wu J; Li Z; Chen W; Zheng Z
    IEEE Trans Cybern; 2023 Feb; 53(2):765-778. PubMed ID: 35316206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attention Based Visual Analysis for Fast Grasp Planning With a Multi-Fingered Robotic Hand.
    Deng Z; Gao G; Frintrop S; Sun F; Zhang C; Zhang J
    Front Neurorobot; 2019; 13():60. PubMed ID: 31417391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.