BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38785715)

  • 1. Electrochemical Impedance Spectroscopy for Ion Sensors with Interdigitated Electrodes: Capacitance Calculations, Equivalent Circuit Models and Design Optimizations.
    Korek EM; Teotia R; Herbig D; Brederlow R
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Easy-to-Use Bacteria Sensing: Modeling and Simulation of a New Environmental Impedimetric Biosensor in Fluids.
    Pfeffer C; Liang Y; Grothe H; Wolf B; Brederlow R
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection.
    Zhurauski P; Arya SK; Jolly P; Tiede C; Tomlinson DC; Ko Ferrigno P; Estrela P
    Biosens Bioelectron; 2018 Jun; 108():1-8. PubMed ID: 29482002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced Graphene Oxide Modified the Interdigitated Chain Electrode for an Insulin Sensor.
    Yagati AK; Park J; Cho S
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26784202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors.
    Brett CMA
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of electrochemical impedance spectroscopy for bioanalytical sensors.
    Randviir EP; Banks CE
    Anal Methods; 2022 Nov; 14(45):4602-4624. PubMed ID: 36342043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interdigitated Sensor Optimization for Blood Sample Analysis.
    Claudel J; Ngo TT; Kourtiche D; Nadi M
    Biosensors (Basel); 2020 Dec; 10(12):. PubMed ID: 33339437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization, fabrication, and characterization of four electrode-based sensors for blood impedance measurement.
    Pradhan R; Raisa SA; Kumar P; Kalkal A; Kumar N; Packirisamy G; Manhas S
    Biomed Microdevices; 2021 Jan; 23(1):9. PubMed ID: 33449205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications.
    Magar HS; Hassan RYA; Mulchandani A
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-air EIS sensor for in situ and real-time monitoring of in vitro epithelial cells under air-exposure.
    Noh S; Kim H
    Lab Chip; 2020 May; 20(10):1751-1761. PubMed ID: 32347229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FEM-based design of optical transparent indium tin oxide multielectrode arrays for multiparametric, high sensitive cell based assays.
    Jahnke HG; Schmidt S; Frank R; Weigel W; Prönnecke C; Robitzki AA
    Biosens Bioelectron; 2019 Mar; 129():208-215. PubMed ID: 30337105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concept for E.coli detection using interdigitated microelectrode impedance sensor.
    Settu K; Liu JT; Chen CJ; Tsai JZ; Chang SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1712-5. PubMed ID: 24110036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes.
    Padmaraj D; Miller JH; Wosik J; Zagozdzon-Wosik W
    Biosens Bioelectron; 2011 Nov; 29(1):13-7. PubMed ID: 21872464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Finite Element Simulations to Equivalent Circuit Models of Extracellular Neuronal Recording Systems Based on Planar and Mushroom Electrodes.
    Leva F; Verardo C; Palestri P; Selmi L
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1115-1126. PubMed ID: 37878426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Impedance of a Biological Tissue with PEDOT:PSS-Coated Metal Electrodes: Effect of Electrode Size on Sensing Efficiency.
    Koutsouras DA; Lingstedt LV; Lieberth K; Reinholz J; Mailänder V; Blom PWM; Gkoupidenis P
    Adv Healthc Mater; 2019 Dec; 8(23):e1901215. PubMed ID: 31701673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gallium nitride electrodes for membrane-based electrochemical biosensors.
    Schubert T; Steinhoff G; von Ribbeck HG; Stutzmannn M; Eickhoff M; Tanaka M
    Eur Phys J E Soft Matter; 2009 Oct; 30(2):233-8. PubMed ID: 19730908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Self-Assembled Monolayer Design and Electrochemical Factors on Impedance-Based Biosensing.
    Brothers MC; Moore D; St Lawrence M; Harris J; Joseph RM; Ratcliff E; Ruiz ON; Glavin N; Kim SS
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equivalent circuit models for a biomembrane impedance sensor and analysis of electrochemical impedance spectra based on support vector regression.
    Xu Y; Li C; Mei W; Guo M; Yang Y
    Med Biol Eng Comput; 2019 Jul; 57(7):1515-1524. PubMed ID: 30941674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on impedimetric biosensors.
    Bahadır EB; Sezgintürk MK
    Artif Cells Nanomed Biotechnol; 2016; 44(1):248-62. PubMed ID: 25211230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution.
    Zia AI; Mukhopadhyay SC; Yu PL; Al-Bahadly IH; Gooneratne CP; Kosel JR
    Biosens Bioelectron; 2015 May; 67():342-9. PubMed ID: 25218198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.