BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 38786000)

  • 1. The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins.
    Serebryany E; Martin RW; Takahashi GR
    Biomolecules; 2024 May; 14(5):. PubMed ID: 38786000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gamma crystallins of the human eye lens.
    Vendra VP; Khan I; Chandani S; Muniyandi A; Balasubramanian D
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):333-43. PubMed ID: 26116913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive cysteine residues in the oxidative dimerization and Cu
    Ramkumar S; Fan X; Wang B; Yang S; Monnier VM
    Biochim Biophys Acta Mol Basis Dis; 2018 Nov; 1864(11):3595-3604. PubMed ID: 30251679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation.
    Kim I; Saito T; Fujii N; Kanamoto T; Chatake T; Fujii N
    Biochem Biophys Res Commun; 2015 Oct; 466(4):622-8. PubMed ID: 26385181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.
    Sakaue H; Takata T; Fujii N; Sasaki H; Fujii N
    Biochim Biophys Acta; 2015 Jan; 1854(1):1-9. PubMed ID: 25450505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cataract-causing defect of a mutant γ-crystallin proceeds through an aggregation pathway which bypasses recognition by the α-crystallin chaperone.
    Moreau KL; King JA
    PLoS One; 2012; 7(5):e37256. PubMed ID: 22655036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cataract-linked γD-crystallin mutants have weak affinity to lens chaperones α-crystallins.
    Mishra S; Stein RA; McHaourab HS
    FEBS Lett; 2012 Feb; 586(4):330-6. PubMed ID: 22289178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylation and carbamylation of human gamma-crystallins.
    Lapko VN; Smith DL; Smith JB
    Protein Sci; 2003 Aug; 12(8):1762-74. PubMed ID: 12876325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallins and Their Complexes.
    Ghosh KS; Chauhan P
    Subcell Biochem; 2019; 93():439-460. PubMed ID: 31939160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. γ-Crystallin redox-detox in the lens.
    Quinlan RA; Hogg PJ
    J Biol Chem; 2018 Nov; 293(46):18010-18011. PubMed ID: 30446601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Structure and Stability of the Disulfide-Linked γS-Crystallin Dimer Provide Insight into Oxidation Products Associated with Lens Cataract Formation.
    Thorn DC; Grosas AB; Mabbitt PD; Ray NJ; Jackson CJ; Carver JA
    J Mol Biol; 2019 Feb; 431(3):483-497. PubMed ID: 30552875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging.
    Norton-Baker B; Mehrabi P; Kwok AO; Roskamp KW; Rocha MA; Sprague-Piercy MA; von Stetten D; Miller RJD; Martin RW
    Structure; 2022 May; 30(5):763-776.e4. PubMed ID: 35338852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox chemistry of lens crystallins: A system of cysteines.
    Serebryany E; Thorn DC; Quintanar L
    Exp Eye Res; 2021 Oct; 211():108707. PubMed ID: 34332989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR; Mok HK; Wu YH; Liang SS; Hsiao CC; Huang CH; Chiou SH
    Mol Vis; 2013; 19():623-37. PubMed ID: 23559856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution properties of γ-crystallins: hydration of fish and mammal γ-crystallins.
    Zhao H; Chen Y; Rezabkova L; Wu Z; Wistow G; Schuck P
    Protein Sci; 2014 Jan; 23(1):88-99. PubMed ID: 24282025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.
    Kopylova LV; Cherepanov IV; Snytnikova OA; Rumyantseva YV; Kolosova NG; Tsentalovich YP; Sagdeev RZ
    Mol Vis; 2011; 17():1457-67. PubMed ID: 21677790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic disulfide exchange in a crystallin protein in the human eye lens promotes cataract-associated aggregation.
    Serebryany E; Yu S; Trauger SA; Budnik B; Shakhnovich EI
    J Biol Chem; 2018 Nov; 293(46):17997-18009. PubMed ID: 30242128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium Binding Dramatically Stabilizes an Ancestral Crystallin Fold in Tunicate βγ-Crystallin.
    Kozlyuk N; Sengupta S; Bierma JC; Martin RW
    Biochemistry; 2016 Dec; 55(50):6961-6968. PubMed ID: 27992995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-methylated cysteines in human lens gamma S-crystallins.
    Lapko VN; Smith DL; Smith JB
    Biochemistry; 2002 Dec; 41(50):14645-51. PubMed ID: 12475213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.