These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 38786000)

  • 1. The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins.
    Serebryany E; Martin RW; Takahashi GR
    Biomolecules; 2024 May; 14(5):. PubMed ID: 38786000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gamma crystallins of the human eye lens.
    Vendra VP; Khan I; Chandani S; Muniyandi A; Balasubramanian D
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):333-43. PubMed ID: 26116913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive cysteine residues in the oxidative dimerization and Cu
    Ramkumar S; Fan X; Wang B; Yang S; Monnier VM
    Biochim Biophys Acta Mol Basis Dis; 2018 Nov; 1864(11):3595-3604. PubMed ID: 30251679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation.
    Kim I; Saito T; Fujii N; Kanamoto T; Chatake T; Fujii N
    Biochem Biophys Res Commun; 2015 Oct; 466(4):622-8. PubMed ID: 26385181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.
    Sakaue H; Takata T; Fujii N; Sasaki H; Fujii N
    Biochim Biophys Acta; 2015 Jan; 1854(1):1-9. PubMed ID: 25450505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cataract-causing defect of a mutant γ-crystallin proceeds through an aggregation pathway which bypasses recognition by the α-crystallin chaperone.
    Moreau KL; King JA
    PLoS One; 2012; 7(5):e37256. PubMed ID: 22655036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cataract-linked γD-crystallin mutants have weak affinity to lens chaperones α-crystallins.
    Mishra S; Stein RA; McHaourab HS
    FEBS Lett; 2012 Feb; 586(4):330-6. PubMed ID: 22289178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylation and carbamylation of human gamma-crystallins.
    Lapko VN; Smith DL; Smith JB
    Protein Sci; 2003 Aug; 12(8):1762-74. PubMed ID: 12876325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallins and Their Complexes.
    Ghosh KS; Chauhan P
    Subcell Biochem; 2019; 93():439-460. PubMed ID: 31939160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. γ-Crystallin redox-detox in the lens.
    Quinlan RA; Hogg PJ
    J Biol Chem; 2018 Nov; 293(46):18010-18011. PubMed ID: 30446601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging.
    Norton-Baker B; Mehrabi P; Kwok AO; Roskamp KW; Rocha MA; Sprague-Piercy MA; von Stetten D; Miller RJD; Martin RW
    Structure; 2022 May; 30(5):763-776.e4. PubMed ID: 35338852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Structure and Stability of the Disulfide-Linked γS-Crystallin Dimer Provide Insight into Oxidation Products Associated with Lens Cataract Formation.
    Thorn DC; Grosas AB; Mabbitt PD; Ray NJ; Jackson CJ; Carver JA
    J Mol Biol; 2019 Feb; 431(3):483-497. PubMed ID: 30552875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox chemistry of lens crystallins: A system of cysteines.
    Serebryany E; Thorn DC; Quintanar L
    Exp Eye Res; 2021 Oct; 211():108707. PubMed ID: 34332989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR; Mok HK; Wu YH; Liang SS; Hsiao CC; Huang CH; Chiou SH
    Mol Vis; 2013; 19():623-37. PubMed ID: 23559856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution properties of γ-crystallins: hydration of fish and mammal γ-crystallins.
    Zhao H; Chen Y; Rezabkova L; Wu Z; Wistow G; Schuck P
    Protein Sci; 2014 Jan; 23(1):88-99. PubMed ID: 24282025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.
    Kopylova LV; Cherepanov IV; Snytnikova OA; Rumyantseva YV; Kolosova NG; Tsentalovich YP; Sagdeev RZ
    Mol Vis; 2011; 17():1457-67. PubMed ID: 21677790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic disulfide exchange in a crystallin protein in the human eye lens promotes cataract-associated aggregation.
    Serebryany E; Yu S; Trauger SA; Budnik B; Shakhnovich EI
    J Biol Chem; 2018 Nov; 293(46):17997-18009. PubMed ID: 30242128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium Binding Dramatically Stabilizes an Ancestral Crystallin Fold in Tunicate βγ-Crystallin.
    Kozlyuk N; Sengupta S; Bierma JC; Martin RW
    Biochemistry; 2016 Dec; 55(50):6961-6968. PubMed ID: 27992995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-methylated cysteines in human lens gamma S-crystallins.
    Lapko VN; Smith DL; Smith JB
    Biochemistry; 2002 Dec; 41(50):14645-51. PubMed ID: 12475213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.