BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 38786024)

  • 1. CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments.
    Laurent M; Geoffroy M; Pavani G; Guiraud S
    Cells; 2024 May; 13(10):. PubMed ID: 38786024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing of Monogenic Neuromuscular Diseases: A Systematic Review.
    Long C; Amoasii L; Bassel-Duby R; Olson EN
    JAMA Neurol; 2016 Nov; 73(11):1349-1355. PubMed ID: 27668807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy.
    Happi Mbakam C; Lamothe G; Tremblay G; Tremblay JP
    Neurotherapeutics; 2022 Apr; 19(3):931-941. PubMed ID: 35165856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy.
    Bengtsson NE; Hall JK; Odom GL; Phelps MP; Andrus CR; Hawkins RD; Hauschka SD; Chamberlain JR; Chamberlain JS
    Nat Commun; 2017 Feb; 8():14454. PubMed ID: 28195574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.
    El Refaey M; Xu L; Gao Y; Canan BD; Adesanya TMA; Warner SC; Akagi K; Symer DE; Mohler PJ; Ma J; Janssen PML; Han R
    Circ Res; 2017 Sep; 121(8):923-929. PubMed ID: 28790199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR technologies for the treatment of Duchenne muscular dystrophy.
    Choi E; Koo T
    Mol Ther; 2021 Nov; 29(11):3179-3191. PubMed ID: 33823301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in CRISPR/Cas9 Genome Editing for the Treatment of Muscular Dystrophies.
    Fatehi S; Marks RM; Rok MJ; Perillat L; Ivakine EA; Cohn RD
    Hum Gene Ther; 2023 May; 34(9-10):388-403. PubMed ID: 37119122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR Correction of Duchenne Muscular Dystrophy.
    Min YL; Bassel-Duby R; Olson EN
    Annu Rev Med; 2019 Jan; 70():239-255. PubMed ID: 30379597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing.
    Min YL; Chemello F; Li H; Rodriguez-Caycedo C; Sanchez-Ortiz E; Mireault AA; McAnally JR; Shelton JM; Zhang Y; Bassel-Duby R; Olson EN
    Mol Ther; 2020 Sep; 28(9):2044-2055. PubMed ID: 32892813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies.
    Chey YCJ; Arudkumar J; Aartsma-Rus A; Adikusuma F; Thomas PQ
    WIREs Mech Dis; 2023 Jan; 15(1):e1580. PubMed ID: 35909075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing.
    Aslesh T; Erkut E; Yokota T
    Expert Opin Biol Ther; 2021 Aug; 21(8):1049-1061. PubMed ID: 33401973
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing.
    Hanson B; Wood MJA; Roberts TC
    RNA Biol; 2021 Jul; 18(7):1048-1062. PubMed ID: 33472516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR Therapeutics for Duchenne Muscular Dystrophy.
    Erkut E; Yokota T
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases.
    Sharma G; Sharma AR; Bhattacharya M; Lee SS; Chakraborty C
    Mol Ther; 2021 Feb; 29(2):571-586. PubMed ID: 33238136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of CRISPR/Cas9 in the treatment of Duchenne muscular dystrophy and its delivery strategies.
    Agrawal P; Harish V; Mohd S; Singh SK; Tewari D; Tatiparthi R; Harshita ; Vishwas S; Sutrapu S; Dua K; Gulati M
    Life Sci; 2023 Oct; 330():122003. PubMed ID: 37544379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges.
    Luther DC; Lee YW; Nagaraj H; Scaletti F; Rotello VM
    Expert Opin Drug Deliv; 2018 Sep; 15(9):905-913. PubMed ID: 30169977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Editing Therapy for Duchenne Muscular Dystrophy.
    Chemello F; Olson EN; Bassel-Duby R
    Hum Gene Ther; 2023 May; 34(9-10):379-387. PubMed ID: 37060194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives.
    Chen G; Wei T; Yang H; Li G; Li H
    Cells; 2022 Sep; 11(19):. PubMed ID: 36230926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo genome editing in mouse restores dystrophin expression in Duchenne muscular dystrophy patient muscle fibers.
    Chen M; Shi H; Gou S; Wang X; Li L; Jin Q; Wu H; Zhang H; Li Y; Wang L; Li H; Lin J; Guo W; Jiang Z; Yang X; Xu A; Zhu Y; Zhang C; Lai L; Li X
    Genome Med; 2021 Apr; 13(1):57. PubMed ID: 33845891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia.
    Alayoubi AM; Khawaji ZY; Mohammed MA; Mercier FE
    Ann Hematol; 2024 Jun; 103(6):1805-1817. PubMed ID: 37736806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.