BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 38786063)

  • 21. Lung epithelial cells induce both phenotype alteration and senescence in breast cancer cells.
    Furukawa M; Wheeler S; Clark AM; Wells A
    PLoS One; 2015; 10(1):e0118060. PubMed ID: 25635394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autophagic cell death, polyploidy and senescence induced in breast tumor cells by the substituted pyrrole JG-03-14, a novel microtubule poison.
    Arthur CR; Gupton JT; Kellogg GE; Yeudall WA; Cabot MC; Newsham IF; Gewirtz DA
    Biochem Pharmacol; 2007 Oct; 74(7):981-91. PubMed ID: 17692290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of senescence escape by the cdk4-EZH2-AP2M1 pathway in response to chemotherapy.
    Le Duff M; Gouju J; Jonchère B; Guillon J; Toutain B; Boissard A; Henry C; Guette C; Lelièvre E; Coqueret O
    Cell Death Dis; 2018 Feb; 9(2):199. PubMed ID: 29415991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclopentenyl cytosine induces senescence in breast cancer cells through the nucleolar stress response and activation of p53.
    Huang M; Whang P; Lewicki P; Mitchell BS
    Mol Pharmacol; 2011 Jul; 80(1):40-8. PubMed ID: 21464199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice.
    Kawasaki T; Chen W; Htwe YM; Tatsumi K; Dudek SM
    Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L834-L845. PubMed ID: 30188745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anterior gradient protein 2 is a marker of tumor aggressiveness in breast cancer and favors chemotherapy‑induced senescence escape.
    Maarouf A; Boissard A; Henry C; Leman G; Coqueret O; Guette C; Lelièvre E
    Int J Oncol; 2022 Jan; 60(1):. PubMed ID: 34913074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis.
    Capparelli C; Chiavarina B; Whitaker-Menezes D; Pestell TG; Pestell RG; Hulit J; Andò S; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Oct; 11(19):3599-610. PubMed ID: 22935696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel indenone derivative selectively induces senescence in MDA-MB-231 (breast adenocarcinoma) cells.
    Priyanga J; Sharan Kumar B; Mahalakshmi R; Nirekshana K; Vinoth P; Sridharan V; Bhakta-Guha D; Guha G
    Chem Biol Interact; 2020 Nov; 331():109250. PubMed ID: 32956706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Senescence sensitivity of breast cancer cells is defined by positive feedback loop between CIP2A and E2F1.
    Laine A; Sihto H; Come C; Rosenfeldt MT; Zwolinska A; Niemelä M; Khanna A; Chan EK; Kähäri VM; Kellokumpu-Lehtinen PL; Sansom OJ; Evan GI; Junttila MR; Ryan KM; Marine JC; Joensuu H; Westermarck J
    Cancer Discov; 2013 Feb; 3(2):182-97. PubMed ID: 23306062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protective role of cytoplasmic p21Cip1/Waf1 in apoptosis of CDK4/6 inhibitor-induced senescence in breast cancer cells.
    Kartika ID; Kotani H; Iida Y; Koyanagi A; Tanino R; Harada M
    Cancer Med; 2021 Dec; 10(24):8988-8999. PubMed ID: 34761877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human pituitary tumor-transforming gene 1 overexpression reinforces oncogene-induced senescence through CXCR2/p21 signaling in breast cancer cells.
    Ruan JW; Liao YC; Lua I; Li MH; Hsu CY; Chen JH
    Breast Cancer Res; 2012 Jul; 14(4):R106. PubMed ID: 22789011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat.
    Tate CR; Rhodes LV; Segar HC; Driver JL; Pounder FN; Burow ME; Collins-Burow BM
    Breast Cancer Res; 2012 May; 14(3):R79. PubMed ID: 22613095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells.
    Hwang HJ; Lee YR; Kang D; Lee HC; Seo HR; Ryu JK; Kim YN; Ko YG; Park HJ; Lee JS
    Cancer Lett; 2020 Oct; 490():100-110. PubMed ID: 32659248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Azithromycin and Roxithromycin define a new family of "senolytic" drugs that target senescent human fibroblasts.
    Ozsvari B; Nuttall JR; Sotgia F; Lisanti MP
    Aging (Albany NY); 2018 Nov; 10(11):3294-3307. PubMed ID: 30428454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Androgen-deprivation induced senescence in prostate cancer cells is permissive for the development of castration-resistance but susceptible to senolytic therapy.
    Carpenter V; Saleh T; Min Lee S; Murray G; Reed J; Souers A; Faber AC; Harada H; Gewirtz DA
    Biochem Pharmacol; 2021 Nov; 193():114765. PubMed ID: 34536356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CD26/DPP4 - a potential biomarker and target for cancer therapy.
    Enz N; Vliegen G; De Meester I; Jungraithmayr W
    Pharmacol Ther; 2019 Jun; 198():135-159. PubMed ID: 30822465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective ablation of primary and paracrine senescent cells by targeting iron dyshomeostasis.
    Admasu TD; Kim K; Rae M; Avelar R; Gonciarz RL; Rebbaa A; Pedro de Magalhães J; Renslo AR; Stolzing A; Sharma A
    Cell Rep; 2023 Feb; 42(2):112058. PubMed ID: 36753419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence.
    Patel PL; Suram A; Mirani N; Bischof O; Herbig U
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E5024-33. PubMed ID: 27503890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LncRNA-OIS1 regulates DPP4 activation to modulate senescence induced by RAS.
    Li L; van Breugel PC; Loayza-Puch F; Ugalde AP; Korkmaz G; Messika-Gold N; Han R; Lopes R; Barbera EP; Teunissen H; de Wit E; Soares RJ; Nielsen BS; Holmstrøm K; Martínez-Herrera DJ; Huarte M; Louloupi A; Drost J; Elkon R; Agami R
    Nucleic Acids Res; 2018 May; 46(8):4213-4227. PubMed ID: 29481642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of the polyamine catabolic enzymes SSAT and SMO in the synergistic effects of standard chemotherapeutic agents with a polyamine analogue in human breast cancer cell lines.
    Pledgie-Tracy A; Billam M; Hacker A; Sobolewski MD; Woster PM; Zhang Z; Casero RA; Davidson NE
    Cancer Chemother Pharmacol; 2010 May; 65(6):1067-81. PubMed ID: 19727732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.