BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38786077)

  • 1. The Role of TLR-2 in Lethal COVID-19 Disease Involving Medullary and Resident Lung Megakaryocyte Up-Regulation in the Microthrombosis Mechanism.
    Pannone G; Pedicillo MC; De Stefano IS; Angelillis F; Barile R; Pannone C; Villani G; Miele F; Municinò M; Ronchi A; Serviddio G; Zito Marino F; Franco R; Colangelo T; Zamparese R
    Cells; 2024 May; 13(10):. PubMed ID: 38786077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19.
    Zhang S; Liu Y; Wang X; Yang L; Li H; Wang Y; Liu M; Zhao X; Xie Y; Yang Y; Zhang S; Fan Z; Dong J; Yuan Z; Ding Z; Zhang Y; Hu L
    J Hematol Oncol; 2020 Sep; 13(1):120. PubMed ID: 32887634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proof of evidence supporting abnormal immunothrombosis in severe COVID-19: naked megakaryocyte nuclei increase in the bone marrow and lungs of critically ill patients.
    Roncati L; Ligabue G; Nasillo V; Lusenti B; Gennari W; Fabbiani L; Malagoli C; Gallo G; Giovanella S; Lupi M; Salviato T; Paolini A; Costantini M; Trenti T; Maiorana A
    Platelets; 2020 Nov; 31(8):1085-1089. PubMed ID: 32857624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany.
    Edler C; Schröder AS; Aepfelbacher M; Fitzek A; Heinemann A; Heinrich F; Klein A; Langenwalder F; Lütgehetmann M; Meißner K; Püschel K; Schädler J; Steurer S; Mushumba H; Sperhake JP
    Int J Legal Med; 2020 Jul; 134(4):1275-1284. PubMed ID: 32500199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased number of pulmonary megakaryocytes in COVID-19 patients with diffuse alveolar damage: an autopsy study with clinical correlation and review of the literature.
    Valdivia-Mazeyra MF; Salas C; Nieves-Alonso JM; Martín-Fragueiro L; Bárcena C; Muñoz-Hernández P; Villar-Zarra K; Martín-López J; Ramasco-Rueda F; Fraga J; Jiménez-Heffernan JA
    Virchows Arch; 2021 Mar; 478(3):487-496. PubMed ID: 32915265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology.
    Bussani R; Schneider E; Zentilin L; Collesi C; Ali H; Braga L; Volpe MC; Colliva A; Zanconati F; Berlot G; Silvestri F; Zacchigna S; Giacca M
    EBioMedicine; 2020 Nov; 61():103104. PubMed ID: 33158808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation.
    Aboudounya MM; Heads RJ
    Mediators Inflamm; 2021; 2021():8874339. PubMed ID: 33505220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ACE2 protein expression in lung tissues of severe COVID-19 infection.
    Gheware A; Ray A; Rana D; Bajpai P; Nambirajan A; Arulselvi S; Mathur P; Trikha A; Arava S; Das P; Mridha AR; Singh G; Soneja M; Nischal N; Lalwani S; Wig N; Sarkar C; Jain D
    Sci Rep; 2022 Mar; 12(1):4058. PubMed ID: 35260724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients.
    Wang C; Xie J; Zhao L; Fei X; Zhang H; Tan Y; Nie X; Zhou L; Liu Z; Ren Y; Yuan L; Zhang Y; Zhang J; Liang L; Chen X; Liu X; Wang P; Han X; Weng X; Chen Y; Yu T; Zhang X; Cai J; Chen R; Shi ZL; Bian XW
    EBioMedicine; 2020 Jul; 57():102833. PubMed ID: 32574956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Effect of SARS-CoV-2 Spike Glycoprotein 1 on Human Bronchial and Alveolar Lung Mucosa Models: Implications for Pathogenicity.
    Rahman M; Irmler M; Keshavan S; Introna M; Beckers J; Palmberg L; Johanson G; Ganguly K; Upadhyay S
    Viruses; 2021 Dec; 13(12):. PubMed ID: 34960806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City.
    Borczuk AC; Salvatore SP; Seshan SV; Patel SS; Bussel JB; Mostyka M; Elsoukkary S; He B; Del Vecchio C; Fortarezza F; Pezzuto F; Navalesi P; Crisanti A; Fowkes ME; Bryce CH; Calabrese F; Beasley MB
    Mod Pathol; 2020 Nov; 33(11):2156-2168. PubMed ID: 32879413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLA-E/NKG2A Pathway.
    Bortolotti D; Gentili V; Rizzo S; Rotola A; Rizzo R
    Cells; 2020 Aug; 9(9):. PubMed ID: 32859121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innate Immune Signaling and Proteolytic Pathways in the Resolution or Exacerbation of SARS-CoV-2 in Covid-19: Key Therapeutic Targets?
    Sallenave JM; Guillot L
    Front Immunol; 2020; 11():1229. PubMed ID: 32574272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19.
    Fu J; Zhou B; Zhang L; Balaji KS; Wei C; Liu X; Chen H; Peng J; Fu J
    Mol Biol Rep; 2020 Jun; 47(6):4383-4392. PubMed ID: 32410141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19.
    Grobbelaar LM; Venter C; Vlok M; Ngoepe M; Laubscher GJ; Lourens PJ; Steenkamp J; Kell DB; Pretorius E
    Biosci Rep; 2021 Aug; 41(8):. PubMed ID: 34328172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytologic findings in effusions from patients with SARS-CoV-2 infection.
    Cantley RL; Hrycaj S; Konopka K; Chan MP; Huang T; Pantanowitz L
    J Am Soc Cytopathol; 2021; 10(3):261-269. PubMed ID: 33753013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells.
    Colunga Biancatelli RML; Solopov PA; Sharlow ER; Lazo JS; Marik PE; Catravas JD
    Am J Physiol Lung Cell Mol Physiol; 2021 Aug; 321(2):L477-L484. PubMed ID: 34156871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy.
    Datta PK; Liu F; Fischer T; Rappaport J; Qin X
    Theranostics; 2020; 10(16):7448-7464. PubMed ID: 32642005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Glucocorticoid and Androgen Receptor Modulator Reduces Viral Entry and Innate Immune Inflammatory Responses in the Syrian Hamster Model of SARS-CoV-2 Infection.
    Rocha SM; Fagre AC; Latham AS; Cummings JE; Aboellail TA; Reigan P; Aldaz DA; McDermott CP; Popichak KA; Kading RC; Schountz T; Theise ND; Slayden RA; Tjalkens RB
    Front Immunol; 2022; 13():811430. PubMed ID: 35250984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.