These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38786498)

  • 1. Structural Design and Control Research of Multi-Segmented Biomimetic Millipede Robot.
    Yin H; Shi R; Liu J
    Biomimetics (Basel); 2024 May; 9(5):. PubMed ID: 38786498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain.
    Song G; Ai Q; Tong H; Xu J; Zhu S
    Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot.
    Zhang J; Liu Q; Zhou J; Song A
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001
    [No Abstract]   [Full Text] [Related]  

  • 5. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leg-body coordination strategies for obstacle avoidance and narrow space navigation of multi-segmented, legged robots.
    Mingchinda N; Jaiton V; Leung B; Manoonpong P
    Front Neurorobot; 2023; 17():1214248. PubMed ID: 38023449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.
    Sun T; Dai Z; Manoonpong P
    Front Neural Circuits; 2023; 17():1111285. PubMed ID: 37063383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Workspace trajectory generation with smooth gait transition using CPG-based locomotion control for hexapod robot.
    Helal K; Albadin A; Albitar C; Alsaba M
    Heliyon; 2024 Jun; 10(11):e31847. PubMed ID: 38882328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and experiments of a bio-inspired robot with multi-mode in aerial and terrestrial locomotion.
    Shin WD; Park J; Park HW
    Bioinspir Biomim; 2019 Jul; 14(5):056009. PubMed ID: 31212268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TALBOT: A Track-Leg Transformable Robot.
    Guo W; Qiu J; Xu X; Wu J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on control strategy of pneumatic soft bionic robot based on improved CPG.
    Zhao W; Zhang Y; Lim KM; Yang L; Wang N; Peng L
    PLoS One; 2024; 19(7):e0306320. PubMed ID: 38968177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait Planning and Stability Control of a Quadruped Robot.
    Li J; Wang J; Yang SX; Zhou K; Tang H
    Comput Intell Neurosci; 2016; 2016():9853070. PubMed ID: 27143959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Wheel-Legged Hexapod Robot.
    Ni Y; Li L; Qiu J; Sun Y; Qin G; Han Q; Ji A
    Biomimetics (Basel); 2022 Sep; 7(4):. PubMed ID: 36278703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the role of sensory feedbacks in rowat-selverston CpG to improve robot legged locomotion.
    Amrollah E; Henaff P
    Front Neurorobot; 2010; 4():113. PubMed ID: 21228904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quadruped Robot Control: An Approach Using Body Planar Motion Control, Legs Impedance Control and Bézier Curves.
    Pedro GDG; Bermudez G; Medeiros VS; Cruz Neto HJD; Barros LGD; Pessin G; Becker M; Freitas GM; Boaventura T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.
    Spröwitz AT; Ajallooeian M; Tuleu A; Ijspeert AJ
    Front Comput Neurosci; 2014; 8():27. PubMed ID: 24639645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing minimal and scalable insect-inspired multi-locomotion millirobots.
    Zhakypov Z; Mori K; Hosoda K; Paik J
    Nature; 2019 Jul; 571(7765):381-386. PubMed ID: 31292552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Running over unknown rough terrain with a one-legged planar robot.
    Andrews B; Miller B; Schmitt J; Clark JE
    Bioinspir Biomim; 2011 Jun; 6(2):026009. PubMed ID: 21555844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.