These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3878658)

  • 21. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
    Lännergren J
    J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of diethyl-stilboestrol on single fibres of frog skeletal muscle.
    Khan AR
    Acta Physiol Scand; 1979 May; 106(1):69-73. PubMed ID: 313661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism underlying double-hyperbolic force-velocity relation in vertebrate skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1993; 332():667-76; discussion 676-8. PubMed ID: 8109377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isometric twitch and tetanic contraction of frog skeletal muscles at temperatures between 0 to 30 degrees C.
    Kössler F; Lange F; Küchler G
    Biomed Biochim Acta; 1987; 46(11):809-13. PubMed ID: 3502248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The consequences of fibre heterogeneity on the force-velocity relation of skeletal muscle.
    Josephson RK; Edman KA
    Acta Physiol Scand; 1988 Mar; 132(3):341-52. PubMed ID: 3265837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Double-hyperbolic nature of the force-velocity relation in frog skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1988; 226():643-52. PubMed ID: 3261494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation.
    Josephson RK; Edman KA
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):511-25. PubMed ID: 9518709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of ethanol and acetaldehyde on electro-mechanical coupling of skeletal muscle fibers.
    Khan AR
    Acta Physiol Scand; 1981 Apr; 111(4):425-30. PubMed ID: 6975552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contractile properties of isolated frog skeletal muscles under the influence of Na-octanoate.
    Caffier G; Kössler F; Ransch E; Küchler G
    Acta Biol Med Ger; 1982; 41(2-3):205-13. PubMed ID: 6981273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shortening induced deactivation of skinned fibres of frog and mouse striated muscle.
    Ekelund MC; Edman KA
    Acta Physiol Scand; 1982 Oct; 116(2):189-99. PubMed ID: 6820231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1990 May; 424():133-49. PubMed ID: 2391650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The variation of characteristics of twitch and tetanic contractions with sarcomere length in isolated muscle fibres of the frog.
    Cecchi G; Colomo F; Lombardi V
    Arch Fisiol; 1979 Jun; 71(1-4):279-302. PubMed ID: 318017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in maximum velocity of shortening along single muscle fibres of the frog.
    Edman KA; Reggiani C; te Kronnie G
    J Physiol; 1985 Aug; 365():147-63. PubMed ID: 3875712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres.
    Lipská E; Radzyukevich T
    Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of amrinone on contraction and K+-induced contracture of normal and subacutely failed cat ventricular muscle.
    Gaide MS; Kimura S; Lodge NJ; Cameron JS; Kozlovskis PL; Myerburg RJ; Bassett AL
    Circulation; 1986 Mar; 73(3 Pt 2):III36-45. PubMed ID: 3943180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 2,3-Butanedione monoxime increases speed of relaxation in single muscle fibres of frog.
    Sun YB; Lou F; Edman KA
    Acta Physiol Scand; 2001 May; 172(1):53-61. PubMed ID: 11437739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inotropic mechanisms of amrinone in papillary muscles from guinea-pig hearts.
    Mörner SE; Wohlfart B
    Acta Physiol Scand; 1990 Aug; 139(4):575-81. PubMed ID: 2248037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of submaximal activation on the determinants of power of chemically skinned rat soleus fibres.
    Gilliver SF; Degens H; Rittweger J; Jones DA
    Exp Physiol; 2011 Feb; 96(2):171-8. PubMed ID: 20889604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contractile properties of isolated muscle spindles of the frog.
    Edman KA; Radzyukevich T; Kronborg B
    J Physiol; 2002 Jun; 541(Pt 3):905-16. PubMed ID: 12068049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation in myoplasmic Ca2+ concentration during contraction and relaxation studied by the indicator fluo-3 in frog muscle fibres.
    Caputo C; Edman KA; Lou F; Sun YB
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):137-48. PubMed ID: 7965829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.