These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Metabolic Engineering of Microalgae for Biofuel Production. Naghshbandi MP; Tabatabaei M; Aghbashlo M; Aftab MN; Iqbal I Methods Mol Biol; 2020; 1980():153-172. PubMed ID: 30666564 [TBL] [Abstract][Full Text] [Related]
6. Improving lipid production by strain development in microalgae: Strategies, challenges and perspectives. Park S; Nguyen THT; Jin E Bioresour Technol; 2019 Nov; 292():121953. PubMed ID: 31405625 [TBL] [Abstract][Full Text] [Related]
7. Microalgal metabolic engineering strategies for the production of fuels and chemicals. Kang NK; Baek K; Koh HG; Atkinson CA; Ort DR; Jin YS Bioresour Technol; 2022 Feb; 345():126529. PubMed ID: 34896527 [TBL] [Abstract][Full Text] [Related]
8. Engineering the metabolic pathways of lipid biosynthesis to develop robust microalgal strains for biodiesel production. Shahid A; Rehman AU; Usman M; Ashraf MUF; Javed MR; Khan AZ; Gill SS; Mehmood MA Biotechnol Appl Biochem; 2020 Jan; 67(1):41-51. PubMed ID: 31486562 [TBL] [Abstract][Full Text] [Related]
9. Metabolic Engineering Strategies for the Enhanced Microalgal Production of Long-Chain Polyunsaturated Fatty Acids (LC-PUFAs). Ghiffary MR; Kim HU; Chang YK Biotechnol J; 2019 Jun; 14(6):e1900043. PubMed ID: 31045311 [TBL] [Abstract][Full Text] [Related]
10. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Liang MH; Jiang JG Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199 [TBL] [Abstract][Full Text] [Related]
11. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica. Chen JW; Liu WJ; Hu DX; Wang X; Balamurugan S; Alimujiang A; Yang WD; Liu JS; Li HY Biotechnol Appl Biochem; 2017 Sep; 64(5):620-626. PubMed ID: 27572053 [TBL] [Abstract][Full Text] [Related]
12. [Biodiesel from microalgae: ways of increasing effectiveness of lipids accumulation by genetic engineering methods]. Korkhovoĭ VI; Blium IaB Tsitol Genet; 2013; 47(6):30-42. PubMed ID: 24437196 [TBL] [Abstract][Full Text] [Related]
14. Microalgal metabolic engineering facilitates precision nutrition and dietary regulation. Zhao W; Zhu J; Yang S; Liu J; Sun Z; Sun H Sci Total Environ; 2024 Nov; 951():175460. PubMed ID: 39137841 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation. Guarnieri MT; Nag A; Yang S; Pienkos PT J Proteomics; 2013 Nov; 93():245-53. PubMed ID: 23748020 [TBL] [Abstract][Full Text] [Related]
16. Genetic engineering of microorganisms for biodiesel production. Lin H; Wang Q; Shen Q; Zhan J; Zhao Y Bioengineered; 2013; 4(5):292-304. PubMed ID: 23222170 [TBL] [Abstract][Full Text] [Related]
17. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review. Ho SH; Ye X; Hasunuma T; Chang JS; Kondo A Biotechnol Adv; 2014 Dec; 32(8):1448-59. PubMed ID: 25285758 [TBL] [Abstract][Full Text] [Related]
18. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Alishah Aratboni H; Rafiei N; Garcia-Granados R; Alemzadeh A; Morones-Ramírez JR Microb Cell Fact; 2019 Oct; 18(1):178. PubMed ID: 31638987 [TBL] [Abstract][Full Text] [Related]
19. Innovations in improving lipid production: Algal chemical genetics. Wase N; Black P; DiRusso C Prog Lipid Res; 2018 Jul; 71():101-123. PubMed ID: 30017715 [TBL] [Abstract][Full Text] [Related]