BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38786616)

  • 1. Antifungal Activities of Biogenic Silver Nanoparticles Mediated by Marine Algae: In Vitro and In Vivo Insights of Coating Tomato Fruit to Protect against
    Hamouda RA; Almaghrabi FQ; Alharbi OM; Al-Harbi ADM; Alsulami RM; Alhumairi AM
    Mar Drugs; 2024 May; 22(5):. PubMed ID: 38786616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potent effect of selenium nanoparticles: insight into the antifungal activity and preservation of postharvest strawberries from gray mold diseases.
    Hamouda RA; Abdel-Hamid MS; Hagagy N; Nofal AM
    J Sci Food Agric; 2024 Apr; ():. PubMed ID: 38563620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum disulfide nanosheets loaded with chitosan and silver nanoparticles effective antifungal activities: in vitro and in vivo.
    Zhang W; Mou Z; Wang Y; Chen Y; Yang E; Guo F; Sun D; Wang W
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():486-497. PubMed ID: 30678936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green-fabricated silver nanoparticles from Quercus incana leaf extract to control the early blight of tomatoes caused by Alternaria solani.
    Khatoon J; Mehmood A; Khalid AUR; Khan MAR; Ahmad KS; Amjad MS; Bashir U; Raffi M; Proćków J
    BMC Plant Biol; 2024 Apr; 24(1):302. PubMed ID: 38637784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coatings comprising chitosan and Mentha piperita L. or Mentha × villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit.
    Guerra ICD; de Oliveira PDL; de Souza Pontes AL; Lúcio ASSC; Tavares JF; Barbosa-Filho JM; Madruga MS; de Souza EL
    Int J Food Microbiol; 2015 Dec; 214():168-178. PubMed ID: 26313246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial, Antioxidant and Larvicidal Activities of Spherical Silver Nanoparticles Synthesized by Endophytic Streptomyces spp.
    Fouda A; Hassan SE; Abdo AM; El-Gamal MS
    Biol Trace Elem Res; 2020 Jun; 195(2):707-724. PubMed ID: 31486967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal effectiveness of potassium sorbate incorporated in edible coatings against spoilage molds of apples, cucumbers, and tomatoes during refrigerated storage.
    Mehyar GF; Al-Qadiri HM; Abu-Blan HA; Swanson BG
    J Food Sci; 2011 Apr; 76(3):M210-7. PubMed ID: 21535846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clove Essential Oil as an Alternative Approach to Control Postharvest Blue Mold Caused by
    Chen C; Cai N; Chen J; Wan C
    Biomolecules; 2019 May; 9(5):. PubMed ID: 31117317
    [No Abstract]   [Full Text] [Related]  

  • 9. Biogenic Nanoparticles Silver and Copper and Their Composites Derived from Marine Alga
    Hamouda RA; Alharthi MA; Alotaibi AS; Alenzi AM; Albalawi DA; Makharita RR
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimetallic nanoparticles and biochar produced by
    Aldahasi RM; Shami A; Mohammed AE
    PeerJ; 2024; 12():e17023. PubMed ID: 38440409
    [No Abstract]   [Full Text] [Related]  

  • 11. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A.
    Liu X; Wang J; Gou P; Mao C; Zhu ZR; Li H
    Int J Food Microbiol; 2007 Nov; 119(3):223-9. PubMed ID: 17765990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.
    He L; Liu Y; Mustapha A; Lin M
    Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preservation of Xinyu Tangerines with an Edible Coating Using Ficus hirta Vahl. Fruits Extract-Incorporated Chitosan.
    Chen C; Nie Z; Wan C; Chen J
    Biomolecules; 2019 Jan; 9(2):. PubMed ID: 30696102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monosubstituted Benzene Derivatives from Fruits of Ficus hirta and Their Antifungal Activity against Phytopathogen Penicillium italicum.
    Wan C; Han J; Chen C; Yao L; Chen J; Yuan T
    J Agric Food Chem; 2016 Jul; 64(28):5621-4. PubMed ID: 27381890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities.
    Taha ZK; Hawar SN; Sulaiman GM
    Biotechnol Lett; 2019 Sep; 41(8-9):899-914. PubMed ID: 31201601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial and In Vitro Cytotoxic Efficacy of Biogenic Silver Nanoparticles (Ag-NPs) Fabricated by Callus Extract of
    Lashin I; Fouda A; Gobouri AA; Azab E; Mohammedsaleh ZM; Makharita RR
    Biomolecules; 2021 Feb; 11(3):. PubMed ID: 33668378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication, characterization and antifungal evaluation of polyphenolic extract activated keratin starch coating on infected tomato fruits.
    Oluba OM; Obokare O; Bayo-Olorunmeke OA; Ojeaburu SI; Ogunlowo OM; Irokanulo EO; Akpor OB
    Sci Rep; 2022 Mar; 12(1):4340. PubMed ID: 35288581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits.
    Gudadhe JA; Yadav A; Gade A; Marcato PD; Durán N; Rai M
    IET Nanobiotechnol; 2014 Dec; 8(4):190-5. PubMed ID: 25429496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of postharvest diseases caused by Penicillium spp. with myrtle leaf phenolic extracts: in vitro and in vivo study on mandarin fruit during storage.
    Fadda A; Sarais G; Lai C; Sale L; Mulas M
    J Sci Food Agric; 2021 Aug; 101(10):4229-4240. PubMed ID: 33426638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Silver Nanoparticles Derived from Brown Algae
    Hamouda RA; Aljohani ES
    Mar Drugs; 2024 Mar; 22(4):. PubMed ID: 38667771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.