BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38786675)

  • 1. Integrated Transcriptomics and Metabolomics Analysis Reveal the Regulatory Mechanisms Underlying Sodium Butyrate-Induced Carotenoid Biosynthesis in
    Huang X; Fan J; Guo C; Chen Y; Qiu J; Zhang Q
    J Fungi (Basel); 2024 Apr; 10(5):. PubMed ID: 38786675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chromosome-scale genome provides new insights into the typical carotenoid biosynthesis in the important red yeast Rhodotorula glutinis QYH-2023 with anti-inflammatory effects.
    He Q; Bai S; Chen C; Yang X; Li Z; Sun S; Qu X; Yang X; Pan J; Liu W; Hou C; Deng Y
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):132103. PubMed ID: 38719011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis.
    He J; Yang Z; Hu B; Ji X; Wei Y; Lin L; Zhang Q
    Yeast; 2015 Nov; 32(11):683-90. PubMed ID: 26284451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-omics metabolism analysis on irradiation-induced oxidative stress to Rhodotorula glutinis.
    Gong G; Liu L; Zhang X; Tan T
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):361-374. PubMed ID: 30343426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomics and lipidomics analysis of the biotechnologically important oleaginous red yeast Rhodotorula glutinis ZHK provides new insights into its lipid and carotenoid metabolism.
    Li CJ; Zhao D; Cheng P; Zheng L; Yu GH
    BMC Genomics; 2020 Nov; 21(1):834. PubMed ID: 33243144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously enhanced intracellular lipogenesis and β-carotene biosynthesis of Rhodotorula glutinis by light exposure with sodium acetate as the substrate.
    Gong G; Zhang X; Tan T
    Bioresour Technol; 2020 Jan; 295():122274. PubMed ID: 31670113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Raman tweezers-based analysis of carotenoid synthesis in Rhodotorula glutinis].
    Yuan YF; Tao ZH; Liu JX; Wang GW; Li YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):1001-5. PubMed ID: 21714247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by Rhodotorula yeast strains in media containing agro-industrial waste.
    Kot AM; Błażejak S; Kieliszek M; Gientka I; Bryś J; Reczek L; Pobiega K
    World J Microbiol Biotechnol; 2019 Oct; 35(10):157. PubMed ID: 31576445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of olive mill wastewater for selective production of lipids and carotenoids by Rhodotorula glutinis.
    Keskin A; Ünlü AE; Takaç S
    Appl Microbiol Biotechnol; 2023 Aug; 107(15):4973-4985. PubMed ID: 37329489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Carotenoid Productivity and COD Removal Efficiency by Co-culture of Rhodotorula glutinis and Chlorella vulgaris Using Starch Wastewaters as Raw Material.
    Zhang Z; Pang Z; Xu S; Wei T; Song L; Wang G; Zhang J; Yang X
    Appl Biochem Biotechnol; 2019 Sep; 189(1):193-205. PubMed ID: 30969398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of carotenoid production from hyper-producing Rhodotorula glutinis mutant 32 by a factorial approach.
    Bhosale P; Gadre RV
    Lett Appl Microbiol; 2001 Jul; 33(1):12-6. PubMed ID: 11442807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotenoid Biosynthesis: Genome-Wide Profiling, Pathway Identification in
    Bo S; Ni X; Guo J; Liu Z; Wang X; Sheng Y; Zhang G; Yang J
    Front Nutr; 2022; 9():918240. PubMed ID: 35782944
    [No Abstract]   [Full Text] [Related]  

  • 13. Organic-solvent-free extraction of carotenoids from yeast Rhodotorula glutinis by application of ultrasound under pressure.
    Martínez JM; Delso C; Aguilar DE; Álvarez I; Raso J
    Ultrason Sonochem; 2020 Mar; 61():104833. PubMed ID: 31669840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation.
    Sakaki H; Nakanishi T; Tada A; Miki W; Komemushi S
    J Biosci Bioeng; 2001; 92(3):294-7. PubMed ID: 16233099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis].
    Davoli P; Mierau V; Weber RW
    Prikl Biokhim Mikrobiol; 2004; 40(4):460-5. PubMed ID: 15455720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic and Metabolomic Analyses Provide Insights into the Enhancement of Torulene and Torularhodin Production in
    Li C; Cheng P; Li Z; Xu Y; Sun Y; Qin D; Yu G
    J Agric Food Chem; 2021 Sep; 69(38):11523-11533. PubMed ID: 34545740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caroteno-protein and exopolysaccharide production by co-cultures of Rhodotorula glutinis and Lactobacillus helveticus.
    Frengova G; Simova E; Beshkova D
    J Ind Microbiol Biotechnol; 1997 Apr; 18(4):272-7. PubMed ID: 9172434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa.
    Landolfo S; Ianiri G; Camiolo S; Porceddu A; Mulas G; Chessa R; Zara G; Mannazzu I
    Microbiology (Reading); 2018 Jan; 164(1):78-87. PubMed ID: 29219805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of several waste substrates for carotenoid-rich yeast biomass production.
    Marova I; Carnecka M; Halienova A; Certik M; Dvorakova T; Haronikova A
    J Environ Manage; 2012 Mar; 95 Suppl():S338-42. PubMed ID: 21741756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carotenoid biosynthesis in Rhodotorula glutinis.
    Hayman EP; Yokoyama H; Chichester CO; Simpson KL
    J Bacteriol; 1974 Dec; 120(3):1339-43. PubMed ID: 4474162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.