These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38786675)

  • 41. Comparative evaluation of different carbon sources supply on simultaneous production of lipid and carotene of Rhodotorula glutinis with irradiation and the assessment of key gene transcription.
    Gong G; Liu L; Zhang X; Tan T
    Bioresour Technol; 2019 Sep; 288():121559. PubMed ID: 31152958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous Production of Lipids and Carotenoids by the Red Yeast Rhodotorula from Waste Glycerol Fraction and Potato Wastewater.
    Kot AM; Błażejak S; Kieliszek M; Gientka I; Bryś J
    Appl Biochem Biotechnol; 2019 Oct; 189(2):589-607. PubMed ID: 31073981
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Analysis of pigments from Rhodotorula glutinis by Raman spectroscopy and thin layer chromatography].
    Yuan YF; Tao ZH; Wang X; Li YQ; Liu JX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Mar; 32(3):695-8. PubMed ID: 22582635
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Production of Enhanced Carotenoid-Producing Strains of the Yeast Rhodotorula gracilis Using the Antibiotic Zeocin.
    Watabe Y; Takahashi S
    Appl Biochem Biotechnol; 2023 Dec; 195(12):7889-7897. PubMed ID: 37084031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. beta-Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant.
    Bhosale P; Gadre RV
    J Ind Microbiol Biotechnol; 2001 Jun; 26(6):327-32. PubMed ID: 11571614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning of a LEU gene and an ARS site of Rhodotorula glutinis.
    Ho YR; Chang MC
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1988 Feb; 21(1):1-8. PubMed ID: 3061748
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of beta-carotene by a mutant of Rhodotorula glutinis.
    Bhosale PB; Gadre RV
    Appl Microbiol Biotechnol; 2001 May; 55(4):423-7. PubMed ID: 11398921
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolomics of astaxanthin biosynthesis and corresponding regulation strategies in Phaffia rhodozyma.
    Yang H; Yang L; Du X; He N; Jiang Z; Zhu Y; Li L; Ni H; Li Q; Li Z
    Yeast; 2023 Jul; 40(7):254-264. PubMed ID: 37132227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrated transcriptome and metabolome analysis unveils the mechanism of color-transition in Edgeworthia chrysantha tepals.
    Zhou N; Yan Y; Wen Y; Zhang M; Huang Y
    BMC Plant Biol; 2023 Nov; 23(1):567. PubMed ID: 37968605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant.
    Cutzu R; Coi A; Rosso F; Bardi L; Ciani M; Budroni M; Zara G; Zara S; Mannazzu I
    World J Microbiol Biotechnol; 2013 Jun; 29(6):1009-17. PubMed ID: 23355137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Respiratory system of Rhodotorula glutinis. I. Inhibitor tolerance and cytochrome components.
    Matsunaka S; Morita S; Conti SF
    Plant Physiol; 1966 Oct; 41(8):1364-9. PubMed ID: 6009625
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Whole genome sequencing of
    Gan HM; Thomas BN; Cavanaugh NT; Morales GH; Mayers AN; Savka MA; Hudson AO
    PeerJ; 2017; 5():e4030. PubMed ID: 29158974
    [TBL] [Abstract][Full Text] [Related]  

  • 53. BIOSYNTHESIS OF YEAST CAROTENOIDS.
    SIMPSON KL; NAKAYAMA TO; CHICHESTER CO
    J Bacteriol; 1964 Dec; 88(6):1688-94. PubMed ID: 14240958
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Some properties of the adenosine triphosphatase systems of two yeast species, Saccharomyces cerevisiae and Rhodotorula glutinis.
    Sigler K; Kotyk A
    Mol Cell Biochem; 1976 Aug; 12(2):73-9. PubMed ID: 8702
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative metabolomic and transcriptomic analysis reveals a coexpression network of the carotenoid metabolism pathway in the panicle of Setaria italica.
    Li H; Han S; Huo Y; Ma G; Sun Z; Li H; Hou S; Han Y
    BMC Plant Biol; 2022 Mar; 22(1):105. PubMed ID: 35260077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integration of transcriptomics and metabolomics provides metabolic and functional insights into reduced insulin secretion in MIN6 β-cells exposed to deficient and excessive arginine.
    Xu L; Lin X; Li X; Hu Z; Hou Q; Wang Y; Wang Z
    FASEB J; 2022 Mar; 36(3):e22206. PubMed ID: 35199385
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts.
    Maza DD; Viñarta SC; Su Y; Guillamón JM; Aybar MJ
    J Biotechnol; 2020 Feb; 310():21-31. PubMed ID: 32004579
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis.
    Rani SH; Saha S; Rajasekharan R
    Microbiology (Reading); 2013 Jan; 159(Pt 1):155-166. PubMed ID: 23103975
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcriptomic Analysis Reveals the Potential Mechanisms for Improving Carotenoid Production in
    Gao H; Tang Y; Lv R; Jiang W; Jiang Y; Zhang W; Xin F; Jiang M
    J Agric Food Chem; 2024 Feb; 72(7):3793-3799. PubMed ID: 38327062
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of novel genes in the carotenogenic and oleaginous yeast Rhodotorula toruloides through genome-wide insertional mutagenesis.
    Liu Y; Koh CMJ; Yap SA; Du M; Hlaing MM; Ji L
    BMC Microbiol; 2018 Feb; 18(1):14. PubMed ID: 29466942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.