These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38786743)

  • 1. Predicting the Pathway Involvement of Metabolites Based on Combined Metabolite and Pathway Features.
    Huckvale ED; Moseley HNB
    Metabolites; 2024 May; 14(5):. PubMed ID: 38786743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting The Pathway Involvement Of Metabolites Based on Combined Metabolite and Pathway Features.
    Huckvale ED; Moseley HNB
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmark Dataset for Training Machine Learning Models to Predict the Pathway Involvement of Metabolites.
    Huckvale ED; Powell CD; Jin H; Moseley HNB
    Metabolites; 2023 Nov; 13(11):. PubMed ID: 37999216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmark dataset for training machine learning models to predict the pathway involvement of metabolites.
    Huckvale ED; Powell CD; Jin H; Moseley HNB
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cautionary tale about properly vetting datasets used in supervised learning predicting metabolic pathway involvement.
    Huckvale ED; Moseley HNB
    PLoS One; 2024; 19(5):e0299583. PubMed ID: 38696410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of early and late stages of bladder cancer using metabolites and machine learning.
    Kouznetsova VL; Kim E; Romm EL; Zhu A; Tsigelny IF
    Metabolomics; 2019 Jun; 15(7):94. PubMed ID: 31222577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of metabolite-protein interactions based on integration of machine learning and constraint-based modeling.
    Soleymani Babadi F; Razaghi-Moghadam Z; Zare-Mirakabad F; Nikoloski Z
    Bioinform Adv; 2023; 3(1):vbad098. PubMed ID: 37521309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of network and molecule structure accurately predicts competitive inhibitory interactions.
    Razaghi-Moghadam Z; Sokolowska EM; Sowa MA; Skirycz A; Nikoloski Z
    Comput Struct Biotechnol J; 2021; 19():2170-2178. PubMed ID: 34136091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-label classification with XGBoost for metabolic pathway prediction.
    Joe H; Kim HG
    BMC Bioinformatics; 2024 Feb; 25(1):52. PubMed ID: 38297220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of plant secondary metabolic pathways using deep transfer learning.
    Bao H; Zhao J; Zhao X; Zhao C; Lu X; Xu G
    BMC Bioinformatics; 2023 Sep; 24(1):348. PubMed ID: 37726702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined network analysis and machine learning allows the prediction of metabolic pathways from tomato metabolomics data.
    Toubiana D; Puzis R; Wen L; Sikron N; Kurmanbayeva A; Soltabayeva A; Del Mar Rubio Wilhelmi M; Sade N; Fait A; Sagi M; Blumwald E; Elovici Y
    Commun Biol; 2019; 2():214. PubMed ID: 31240252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification.
    Chicco D; Jurman G
    BioData Min; 2023 Feb; 16(1):4. PubMed ID: 36800973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An active learning based classification strategy for the minority class problem: application to histopathology annotation.
    Doyle S; Monaco J; Feldman M; Tomaszewski J; Madabhushi A
    BMC Bioinformatics; 2011 Oct; 12():424. PubMed ID: 22034914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PAIRUP-MS: Pathway analysis and imputation to relate unknowns in profiles from mass spectrometry-based metabolite data.
    Hsu YH; Churchhouse C; Pers TH; Mercader JM; Metspalu A; Fischer K; Fortney K; Morgen EK; Gonzalez C; Gonzalez ME; Esko T; Hirschhorn JN
    PLoS Comput Biol; 2019 Jan; 15(1):e1006734. PubMed ID: 30640898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic feed phase identification in multivariate bioprocess profiles by sequential binary classification.
    Nikzad-Langerodi R; Lughofer E; Saminger-Platz S; Zahel T; Sagmeister P; Herwig C
    Anal Chim Acta; 2017 Aug; 982():48-61. PubMed ID: 28734365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A novel method for efficient screening and annotation of important pathway-associated metabolites based on the modified metabolome and probe molecules].
    Li Z; Zheng F; Xia Y; Zhang X; Wang X; Zhao C; Zhao X; Lu X; Xu G
    Se Pu; 2022 Sep; 40(9):788-796. PubMed ID: 36156625
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.