These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38786743)

  • 21. Weakly Semi-supervised phenotyping using Electronic Health records.
    Nogues IE; Wen J; Lin Y; Liu M; Tedeschi SK; Geva A; Cai T; Hong C
    J Biomed Inform; 2022 Oct; 134():104175. PubMed ID: 36064111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring machine learning for untargeted metabolomics using molecular fingerprints.
    Sirocchi C; Biancucci F; Donati M; Bogliolo A; Magnani M; Menotta M; Montagna S
    Comput Methods Programs Biomed; 2024 Jun; 250():108163. PubMed ID: 38626559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An ensemble machine learning model based on multiple filtering and supervised attribute clustering algorithm for classifying cancer samples.
    Bose S; Das C; Banerjee A; Ghosh K; Chattopadhyay M; Chattopadhyay S; Barik A
    PeerJ Comput Sci; 2021; 7():e671. PubMed ID: 34616883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting molecular initiating events using chemical target annotations and gene expression.
    Bundy JL; Judson R; Williams AJ; Grulke C; Shah I; Everett LJ
    BioData Min; 2022 Mar; 15(1):7. PubMed ID: 35246223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric.
    Boughorbel S; Jarray F; El-Anbari M
    PLoS One; 2017; 12(6):e0177678. PubMed ID: 28574989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New KEGG pathway-based interpretable features for classifying ageing-related mouse proteins.
    Fabris F; Freitas AA
    Bioinformatics; 2016 Oct; 32(19):2988-95. PubMed ID: 27318209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Framework for Testing Robustness of Machine Learning-Based Classifiers.
    Chuah J; Kruger U; Wang G; Yan P; Hahn J
    J Pers Med; 2022 Aug; 12(8):. PubMed ID: 36013263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-scale enzymatic reaction prediction by variational graph autoencoders.
    Wang C; Yuan C; Wang Y; Chen R; Shi Y; Patti GJ; Hou Q
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diagnostics of ovarian cancer via metabolite analysis and machine learning.
    Yao JZ; Tsigelny IF; Kesari S; Kouznetsova VL
    Integr Biol (Camb); 2023 Apr; 15():. PubMed ID: 37032481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using classification models for the generation of disease-specific medications from biomedical literature and clinical data repository.
    Wang L; Haug PJ; Del Fiol G
    J Biomed Inform; 2017 May; 69():259-266. PubMed ID: 28435015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating untargeted metabolomics, genetically informed causal inference, and pathway enrichment to define the obesity metabolome.
    Hsu YH; Astley CM; Cole JB; Vedantam S; Mercader JM; Metspalu A; Fischer K; Fortney K; Morgen EK; Gonzalez C; Gonzalez ME; Esko T; Hirschhorn JN
    Int J Obes (Lond); 2020 Jul; 44(7):1596-1606. PubMed ID: 32467615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boosting drug named entity recognition using an aggregate classifier.
    Korkontzelos I; Piliouras D; Dowsey AW; Ananiadou S
    Artif Intell Med; 2015 Oct; 65(2):145-53. PubMed ID: 26116947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasound deep learning radiomics and clinical machine learning models to predict low nuclear grade, ER, PR, and HER2 receptor status in pure ductal carcinoma
    Zhu M; Kuang Y; Jiang Z; Liu J; Zhang H; Zhao H; Luo H; Chen Y; Peng Y
    Gland Surg; 2024 Apr; 13(4):512-527. PubMed ID: 38720675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery.
    Chen X; Pan J; Li Y; Tang R
    Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated metabolic assignment: Semi-supervised learning in metabolic analysis employing two dimensional Nuclear Magnetic Resonance (NMR).
    Migdadi L; Lambert J; Telfah A; Hergenröder R; Wöhler C
    Comput Struct Biotechnol J; 2021; 19():5047-5058. PubMed ID: 34589182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of the Formation of Reactive Metabolites by A Novel Classifier Approach Based on Enrichment Factor Optimization (EFO) as Implemented in the VEGA Program.
    Mazzolari A; Vistoli G; Testa B; Pedretti A
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30428514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets.
    Lanka P; Rangaprakash D; Dretsch MN; Katz JS; Denney TS; Deshpande G
    Brain Imaging Behav; 2020 Dec; 14(6):2378-2416. PubMed ID: 31691160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine Learning Using Neural Networks for Metabolomic Pathway Analyses.
    Bonetta Valentino R; Ebejer JP; Valentino G
    Methods Mol Biol; 2023; 2553():395-415. PubMed ID: 36227552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Development of a widely-targeted metabolomics method based on gas chromatography-mass spectrometry].
    Wang YT; Yang Y; Sun XL; Ji J
    Se Pu; 2023 Jun; 41(6):520-526. PubMed ID: 37259877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.