BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38786776)

  • 1. Correlation between Plasmonic and Thermal Properties of Metallic Nanoparticles.
    Abid I; González-Colsa J; Naveaux C; Campu A; Arib C; Focsan M; Albella P; Edely M; Lamy de La Chapelle M
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold.
    Lalisse A; Tessier G; Plain J; Baffou G
    Sci Rep; 2016 Dec; 6():38647. PubMed ID: 27934890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermal treatment of glioblastoma cells based on plasmonic nanoparticles.
    Jalali BK; Shik SS; Karimzadeh-Bardeei L; Heydari E; Ara MHM
    Lasers Med Sci; 2023 May; 38(1):122. PubMed ID: 37162647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-State Plasmonic Solar Cells.
    Ueno K; Oshikiri T; Sun Q; Shi X; Misawa H
    Chem Rev; 2018 Mar; 118(6):2955-2993. PubMed ID: 28737382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the photothermal conversion efficiencies of tunable gold bipyramids under irradiation by two laser lines in a NIR biological window.
    Campu A; Craciun AM; Focsan M; Astilean S
    Nanotechnology; 2019 Oct; 30(40):405701. PubMed ID: 31247611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot plasmonic interactions: a new look at the photothermal efficacy of gold nanoparticles.
    Lukianova-Hleb EY; Anderson LJ; Lee S; Hafner JH; Lapotko DO
    Phys Chem Chem Phys; 2010 Oct; 12(38):12237-44. PubMed ID: 20714596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu
    Yuan L; Hu W; Zhang H; Chen L; Wang J; Wang Q
    Front Bioeng Biotechnol; 2020; 8():21. PubMed ID: 32133347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-Derived Purification of Gold Nano-Bipyramids for Colorimetric Detection of Tannic Acid.
    Xue Y; Ma X; Feng X; Roberts S; Zhu G; Huang Y; Fan X; Fan J; Chen X
    ACS Appl Nano Mater; 2023 Jul; 6(13):11572-11580. PubMed ID: 37469507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphysics Modeling of Plasmonic Photothermal Heating Effects in Gold Nanoparticles and Nanoparticle Arrays.
    Manrique-Bedoya S; Abdul-Moqueet M; Lopez P; Gray T; Disiena M; Locker A; Kwee S; Tang L; Hood RL; Feng Y; Large N; Mayer KM
    J Phys Chem C Nanomater Interfaces; 2020 Aug; 124(31):17172-17182. PubMed ID: 34367407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photothermal-Assisted Optical Stretching of Gold Nanoparticles.
    Wang S; Ding T
    ACS Nano; 2019 Jan; 13(1):32-37. PubMed ID: 30403333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles.
    Arnob MM; Zhao F; Zeng J; Santos GM; Li M; Shih WC
    Nanoscale; 2014 Nov; 6(21):12470-5. PubMed ID: 25204420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic nanoarcs: a versatile platform with tunable localized surface plasmon resonances in octave intervals.
    Zhang K; Lawson AP; Ellis CT; Davis MS; Murphy TE; Bechtel HA; Tischler JG; Rabin O
    Opt Express; 2020 Oct; 28(21):30889-30907. PubMed ID: 33115080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tackling the Scalability Challenge in Plasmonics by Wrinkle-Assisted Colloidal Self-Assembly.
    Yu Y; Ng C; König TAF; Fery A
    Langmuir; 2019 Jul; 35(26):8629-8645. PubMed ID: 30883131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy.
    Hang Y; Wang A; Wu N
    Chem Soc Rev; 2024 Mar; 53(6):2932-2971. PubMed ID: 38380656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband Transient Response and Wavelength-Tunable Photoacoustics in Plasmonic Hetero-nanoparticles.
    Bykov AY; Xie Y; Krasavin AV; Zayats AV
    Nano Lett; 2023 Apr; 23(7):2786-2791. PubMed ID: 36926927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Generation of Plasmonic Nanoparticles for Manipulating Photon-Plasmon Coupling in Microtube Cavities.
    Yin Y; Wang J; Lu X; Hao Q; Saei Ghareh Naz E; Cheng C; Ma L; Schmidt OG
    ACS Nano; 2018 Apr; 12(4):3726-3732. PubMed ID: 29630816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser assisted synthesis of anisotropic metal nanocrystals and strong light-matter coupling in decahedral bimetallic nanocrystals.
    Balci FM; Sarisozen S; Polat N; Guvenc CM; Karadeniz U; Tertemiz A; Balci S
    Nanoscale Adv; 2021 Mar; 3(6):1674-1681. PubMed ID: 36132566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic-plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures.
    Brullot W; Valev VK; Verbiest T
    Nanomedicine; 2012 Jul; 8(5):559-68. PubMed ID: 21945901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.