These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38786880)
1. Which SDM Model, CLIMEX vs. MaxEnt, Best Forecasts Hayat U; Shi J; Wu Z; Rizwan M; Haider MS Insects; 2024 May; 15(5):. PubMed ID: 38786880 [TBL] [Abstract][Full Text] [Related]
2. Assessing the Global Risk of Establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche Models. Kumar S; Neven LG; Zhu H; Zhang R J Econ Entomol; 2015 Aug; 108(4):1708-19. PubMed ID: 26470312 [TBL] [Abstract][Full Text] [Related]
3. Mapping Global Potential Risk of Establishment of Rhagoletis pomonella (Diptera: Tephritidae) Using MaxEnt and CLIMEX Niche Models. Kumar S; Yee WL; Neven LG J Econ Entomol; 2016 Oct; 109(5):2043-2053. PubMed ID: 27452001 [TBL] [Abstract][Full Text] [Related]
4. Projecting the Global Potential Distribution of Cydia pomonella (Lepidoptera: Tortricidae) Under Historical and RCP4.5 Climate Scenarios. Guo S; Ge X; Zou Y; Zhou Y; Wang T; Zong S J Insect Sci; 2021 Mar; 21(2):. PubMed ID: 33844017 [TBL] [Abstract][Full Text] [Related]
5. Current and Potential Future Global Distribution of the Raisin Moth Wang BX; Zhu L; Ma G; Najar-Rodriguez A; Zhang JP; Zhang F; Avila GA; Ma CS Biology (Basel); 2023 Mar; 12(3):. PubMed ID: 36979127 [TBL] [Abstract][Full Text] [Related]
6. Predicting the invasion risk of rugose spiraling whitefly, Aleurodicus rugioperculatus, in India based on CMIP6 projections by MaxEnt. Maruthadurai R; Das B; Ramesh R Pest Manag Sci; 2023 Jan; 79(1):295-305. PubMed ID: 36151887 [TBL] [Abstract][Full Text] [Related]
7. Predicting North American Scolytinae invasions in the Southern Hemisphere. Lantschner MV; Atkinson TH; Corley JC; Liebhold AM Ecol Appl; 2017 Jan; 27(1):66-77. PubMed ID: 28052506 [TBL] [Abstract][Full Text] [Related]
8. Assessing the potential for establishment of western cherry fruit fly using ecological niche modeling. Kumar S; Neven LG; Yee WL J Econ Entomol; 2014 Jun; 107(3):1032-44. PubMed ID: 25026662 [TBL] [Abstract][Full Text] [Related]
9. Global Potential Distribution of Invasive Species Wei J; Niu M; Zhang H; Cai B; Ji W Insects; 2024 Mar; 15(3):. PubMed ID: 38535390 [TBL] [Abstract][Full Text] [Related]
10. The Potential Global Distribution of Gao T; Shi J Insects; 2021 Mar; 12(3):. PubMed ID: 33807541 [TBL] [Abstract][Full Text] [Related]
11. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846 [TBL] [Abstract][Full Text] [Related]
12. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Shabani F; Kumar L; Ahmadi M Ecol Evol; 2016 Aug; 6(16):5973-86. PubMed ID: 27547370 [TBL] [Abstract][Full Text] [Related]
13. Comparing, evaluating and combining statistical species distribution models and CLIMEX to forecast the distributions of emerging crop pests. Early R; Rwomushana I; Chipabika G; Day R Pest Manag Sci; 2022 Feb; 78(2):671-683. PubMed ID: 34647405 [TBL] [Abstract][Full Text] [Related]
14. Predicting the current potential and future world wide distribution of the onion maggot, Delia antiqua using maximum entropy ecological niche modeling. Ning S; Wei J; Feng J PLoS One; 2017; 12(2):e0171190. PubMed ID: 28158259 [TBL] [Abstract][Full Text] [Related]
15. Shifts in potential geographical distribution of Zhang K; Liu H; Pan H; Shi W; Zhao Y; Li S; Liu J; Tao J Ecol Evol; 2020 Jun; 10(11):4828-4837. PubMed ID: 32551064 [TBL] [Abstract][Full Text] [Related]
16. Modelling the current and potential future distributions of the sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae) using CLIMEX. Aljaryian R; Kumar L; Taylor S Pest Manag Sci; 2016 Oct; 72(10):1989-2000. PubMed ID: 26833543 [TBL] [Abstract][Full Text] [Related]
17. Spatial ensemble modeling for predicting the potential distribution of Lymantria dispar asiatica (Lepidoptera: Erebidae: Lymantriinae) in South Korea. Song JW; Jung JM; Nam Y; Jung JK; Jung S; Lee WH Environ Monit Assess; 2022 Oct; 194(12):889. PubMed ID: 36241949 [TBL] [Abstract][Full Text] [Related]
18. Climate Change Impacts on the Potential Distribution of Ding W; Li H; Wen J Insects; 2022 Jan; 13(1):. PubMed ID: 35055902 [TBL] [Abstract][Full Text] [Related]
19. Impacts of climate change on high priority fruit fly species in Australia. Sultana S; Baumgartner JB; Dominiak BC; Royer JE; Beaumont LJ PLoS One; 2020; 15(2):e0213820. PubMed ID: 32053591 [TBL] [Abstract][Full Text] [Related]
20. Including climate change in pest risk assessment: the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Ni WL; Li ZH; Chen HJ; Wan FH; Qu WW; Zhang Z; Kriticos DJ Bull Entomol Res; 2012 Apr; 102(2):173-83. PubMed ID: 22008216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]