BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38786880)

  • 1. Which SDM Model, CLIMEX vs. MaxEnt, Best Forecasts
    Hayat U; Shi J; Wu Z; Rizwan M; Haider MS
    Insects; 2024 May; 15(5):. PubMed ID: 38786880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Global Risk of Establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche Models.
    Kumar S; Neven LG; Zhu H; Zhang R
    J Econ Entomol; 2015 Aug; 108(4):1708-19. PubMed ID: 26470312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping Global Potential Risk of Establishment of Rhagoletis pomonella (Diptera: Tephritidae) Using MaxEnt and CLIMEX Niche Models.
    Kumar S; Yee WL; Neven LG
    J Econ Entomol; 2016 Oct; 109(5):2043-2053. PubMed ID: 27452001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Projecting the Global Potential Distribution of Cydia pomonella (Lepidoptera: Tortricidae) Under Historical and RCP4.5 Climate Scenarios.
    Guo S; Ge X; Zou Y; Zhou Y; Wang T; Zong S
    J Insect Sci; 2021 Mar; 21(2):. PubMed ID: 33844017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current and Potential Future Global Distribution of the Raisin Moth
    Wang BX; Zhu L; Ma G; Najar-Rodriguez A; Zhang JP; Zhang F; Avila GA; Ma CS
    Biology (Basel); 2023 Mar; 12(3):. PubMed ID: 36979127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the invasion risk of rugose spiraling whitefly, Aleurodicus rugioperculatus, in India based on CMIP6 projections by MaxEnt.
    Maruthadurai R; Das B; Ramesh R
    Pest Manag Sci; 2023 Jan; 79(1):295-305. PubMed ID: 36151887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting North American Scolytinae invasions in the Southern Hemisphere.
    Lantschner MV; Atkinson TH; Corley JC; Liebhold AM
    Ecol Appl; 2017 Jan; 27(1):66-77. PubMed ID: 28052506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the potential for establishment of western cherry fruit fly using ecological niche modeling.
    Kumar S; Neven LG; Yee WL
    J Econ Entomol; 2014 Jun; 107(3):1032-44. PubMed ID: 25026662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Potential Distribution of Invasive Species
    Wei J; Niu M; Zhang H; Cai B; Ji W
    Insects; 2024 Mar; 15(3):. PubMed ID: 38535390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Potential Global Distribution of
    Gao T; Shi J
    Insects; 2021 Mar; 12(3):. PubMed ID: 33807541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian.
    Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R
    Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area.
    Shabani F; Kumar L; Ahmadi M
    Ecol Evol; 2016 Aug; 6(16):5973-86. PubMed ID: 27547370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing, evaluating and combining statistical species distribution models and CLIMEX to forecast the distributions of emerging crop pests.
    Early R; Rwomushana I; Chipabika G; Day R
    Pest Manag Sci; 2022 Feb; 78(2):671-683. PubMed ID: 34647405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the current potential and future world wide distribution of the onion maggot, Delia antiqua using maximum entropy ecological niche modeling.
    Ning S; Wei J; Feng J
    PLoS One; 2017; 12(2):e0171190. PubMed ID: 28158259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifts in potential geographical distribution of
    Zhang K; Liu H; Pan H; Shi W; Zhao Y; Li S; Liu J; Tao J
    Ecol Evol; 2020 Jun; 10(11):4828-4837. PubMed ID: 32551064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the current and potential future distributions of the sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae) using CLIMEX.
    Aljaryian R; Kumar L; Taylor S
    Pest Manag Sci; 2016 Oct; 72(10):1989-2000. PubMed ID: 26833543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial ensemble modeling for predicting the potential distribution of Lymantria dispar asiatica (Lepidoptera: Erebidae: Lymantriinae) in South Korea.
    Song JW; Jung JM; Nam Y; Jung JK; Jung S; Lee WH
    Environ Monit Assess; 2022 Oct; 194(12):889. PubMed ID: 36241949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate Change Impacts on the Potential Distribution of
    Ding W; Li H; Wen J
    Insects; 2022 Jan; 13(1):. PubMed ID: 35055902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of climate change on high priority fruit fly species in Australia.
    Sultana S; Baumgartner JB; Dominiak BC; Royer JE; Beaumont LJ
    PLoS One; 2020; 15(2):e0213820. PubMed ID: 32053591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Including climate change in pest risk assessment: the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae).
    Ni WL; Li ZH; Chen HJ; Wan FH; Qu WW; Zhang Z; Kriticos DJ
    Bull Entomol Res; 2012 Apr; 102(2):173-83. PubMed ID: 22008216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.