These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 38787060)

  • 41. De-ADP-ribosylation actin by Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin.
    Just I; Geipel U; Wegner A; Aktories K
    Eur J Biochem; 1990 Sep; 192(3):723-7. PubMed ID: 2145159
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of GM1 binding in the mucosal immunogenicity and adjuvant activity of the Escherichia coli heat-labile enterotoxin and its B subunit.
    de Haan L; Verweij WR; Feil IK; Holtrop M; Hol WG; Agsteribbe E; Wilschut J
    Immunology; 1998 Jul; 94(3):424-30. PubMed ID: 9767427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel approach to detect toxin-catalyzed ADP-ribosylation in intact cells: its use to study the action of Pasteurella multocida toxin.
    Staddon JM; Bouzyk MM; Rozengurt E
    J Cell Biol; 1991 Nov; 115(4):949-58. PubMed ID: 1835459
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activation of Toxin-Antitoxin System Toxins Suppresses Lethality Caused by the Loss of σE in Escherichia coli.
    Daimon Y; Narita S; Akiyama Y
    J Bacteriol; 2015 Jul; 197(14):2316-24. PubMed ID: 25917909
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation.
    Jankevicius G; Hassler M; Golia B; Rybin V; Zacharias M; Timinszky G; Ladurner AG
    Nat Struct Mol Biol; 2013 Apr; 20(4):508-14. PubMed ID: 23474712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural insights into DarT toxin neutralization by cognate DarG antitoxin: ssDNA mimicry by DarG C-terminal domain keeps the DarT toxin inhibited.
    Deep A; Singh L; Kaur J; Velusamy M; Bhardwaj P; Singh R; Thakur KG
    Structure; 2023 Jul; 31(7):780-789.e4. PubMed ID: 37167974
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pertussis toxin-catalyzed ADP-ribosylation of G(o) alpha with mutations at the carboxyl terminus.
    Avigan J; Murtagh JJ; Stevens LA; Angus CW; Moss J; Vaughan M
    Biochemistry; 1992 Aug; 31(33):7736-40. PubMed ID: 1510959
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shutoff of host transcription triggers a toxin-antitoxin system to cleave phage RNA and abort infection.
    Guegler CK; Laub MT
    Mol Cell; 2021 Jun; 81(11):2361-2373.e9. PubMed ID: 33838104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ParST is a widespread toxin-antitoxin module that targets nucleotide metabolism.
    Piscotta FJ; Jeffrey PD; Link AJ
    Proc Natl Acad Sci U S A; 2019 Jan; 116(3):826-834. PubMed ID: 30598453
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enzymatic and nonenzymatic ADP-ribosylation of cysteine.
    McDonald LJ; Moss J
    Mol Cell Biochem; 1994 Sep; 138(1-2):221-6. PubMed ID: 7898467
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phylogeny Reveals Novel HipA-Homologous Kinase Families and Toxin-Antitoxin Gene Organizations.
    Gerdes K; Bærentsen R; Brodersen DE
    mBio; 2021 Jun; 12(3):e0105821. PubMed ID: 34061596
    [TBL] [Abstract][Full Text] [Related]  

  • 52. From toxins to mammalian enzymes: the diversity of mono-ADP-ribosylation.
    Grimaldi G; Corda D; Catara G
    Front Biosci (Landmark Ed); 2015 Jan; 20(2):389-404. PubMed ID: 25553457
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intracellular Localization of the Proteins Encoded by Some Type II Toxin-Antitoxin Systems in Escherichia coli.
    Mager A; Safran T; Engelberg-Kulka H
    mBio; 2021 Aug; 12(4):e0141721. PubMed ID: 34340547
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studying Catabolism of Protein ADP-Ribosylation.
    Palazzo L; James DI; Waddell ID; Ahel I
    Methods Mol Biol; 2017; 1608():415-430. PubMed ID: 28695524
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks.
    Rakhimova A; Ura S; Hsu DW; Wang HY; Pears CJ; Lakin ND
    Sci Rep; 2017 Mar; 7():43750. PubMed ID: 28252050
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical genetic methodologies for identifying protein substrates of PARPs.
    Rodriguez KM; Cohen MS
    Trends Biochem Sci; 2022 May; 47(5):390-402. PubMed ID: 34366182
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A role of intracellular mono-ADP-ribosylation in cancer biology.
    Scarpa ES; Fabrizio G; Di Girolamo M
    FEBS J; 2013 Aug; 280(15):3551-62. PubMed ID: 23590234
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Subcellular Quantitation of ADP-Ribosylation by High-Content Microscopy.
    Muskalla L; Güldenpfennig A; Hottiger MO
    Methods Mol Biol; 2023; 2609():101-109. PubMed ID: 36515832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Importance of the E. coli DinJ antitoxin carboxy terminus for toxin suppression and regulated proteolysis.
    Ruangprasert A; Maehigashi T; Miles SJ; Dunham CM
    Mol Microbiol; 2017 Apr; 104(1):65-77. PubMed ID: 28164393
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NAD(+)-dependent ADP-ribosylation of T lymphocyte alloantigen RT6.1 reversibly proceeding in intact rat lymphocytes.
    Maehama T; Nishina H; Hoshino S; Kanaho Y; Katada T
    J Biol Chem; 1995 Sep; 270(39):22747-51. PubMed ID: 7559400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.