These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38787123)

  • 1. Comparative Analysis of Laboratory-Made and Industrial-Made Sewage Sludge Ash: Implications for Effective Management Strategy Development.
    Cieślik BM; Ronda O; Grządka E; Orzeł J; Płotka-Wasylka J
    Toxics; 2024 May; 12(5):. PubMed ID: 38787123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration of trace elements and radioisotopes to various fractions of solid wastes generated as a result of the sewage sludge incineration process.
    Ronda O; Cieślik BM; Piotrowska B; Isajenko K; Okabayashi S; Chiba K; Tsuboi M; Płotka-Wasylka J
    Waste Manag; 2024 Jun; 183():245-252. PubMed ID: 38772135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geotechnical properties of clayey soil improved by sewage sludge ash.
    Kadhim YM; Al-Adhamii RAJ; Fattah MY
    J Air Waste Manag Assoc; 2022 Jan; 72(1):34-47. PubMed ID: 33320778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion.
    Pazos M; Kirkelund GM; Ottosen LM
    J Hazard Mater; 2010 Apr; 176(1-3):1073-8. PubMed ID: 20034740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of sewage sludge mono-incinerators: Mass balance and distribution of heavy metals in step grate and fluidized bed incinerators.
    Cheng Y; Oleszek S; Shiota K; Oshita K; Takaoka M
    Waste Manag; 2020 Mar; 105():575-585. PubMed ID: 32171156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility Study of the Synergistic Use of Sludge and Coal-Based Solid Waste to Produce Environmentally Friendly Grouting Materials.
    Zhang W; Li S; Ma J; Huang D; Zhang L; Ma C
    ACS Omega; 2023 Dec; 8(48):45854-45866. PubMed ID: 38075766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The distribution of heavy metals during fluidized bed combustion of sludge (FBSC).
    Van de Velden M; Dewil R; Baeyens J; Josson L; Lanssens P
    J Hazard Mater; 2008 Feb; 151(1):96-102. PubMed ID: 17601665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash.
    Nowak B; Perutka L; Aschenbrenner P; Kraus P; Rechberger H; Winter F
    Waste Manag; 2011 Jun; 31(6):1285-91. PubMed ID: 21333519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sewage sludge ash recovery as valuable raw material for chemical stabilization of leachable heavy metals.
    Benassi L; Zanoletti A; Depero LE; Bontempi E
    J Environ Manage; 2019 Sep; 245():464-470. PubMed ID: 31170635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow analysis of major and trace elements in residues from large-scale sewage sludge incineration.
    Yu S; Zhang H; Lü F; Shao L; He P
    J Environ Sci (China); 2021 Apr; 102():99-109. PubMed ID: 33637269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Cement Replacement with Sewage Sludge Ash (SSA) on the Heat of Hydration of Cement Mortar.
    Haustein E; Kuryłowicz-Cudowska A; Łuczkiewicz A; Fudala-Książek S; Cieślik BM
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete survey of German sewage sludge ash.
    Krüger O; Grabner A; Adam C
    Environ Sci Technol; 2014 Oct; 48(20):11811-8. PubMed ID: 25265150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of sewage sludge incineration ashes from multi-cyclones and baghouse dust filters as possible cement substitutes.
    Salihoglu G; Mardani-Aghabaglou A
    Environ Sci Pollut Res Int; 2021 Jan; 28(1):645-663. PubMed ID: 32820439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoextraction of heavy metals after application of bottom ash and municipal sewage sludge considering the risk of environmental pollution.
    Antonkiewicz J; Kowalewska A; Mikołajczak S; Kołodziej B; Bryk M; Spychaj-Fabisiak E; Koliopoulos T; Babula J
    J Environ Manage; 2022 Mar; 306():114517. PubMed ID: 35051815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling of municipal sewage sludge incineration fly ash based on (NH
    Zhu H; Sun Q; Yan J; Zhang J; Sheng J
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):89986-89995. PubMed ID: 35859233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery potential of German sewage sludge ash.
    Krüger O; Adam C
    Waste Manag; 2015 Nov; 45():400-6. PubMed ID: 25697389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorous recovery from sewage sludge ash suspended in water in a two-compartment electrodialytic cell.
    Ottosen LM; Jensen PE; Kirkelund GM
    Waste Manag; 2016 May; 51():142-148. PubMed ID: 26951721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions.
    Jalali M; Imanifard A
    Int J Phytoremediation; 2021; 23(14):1525-1537. PubMed ID: 33945349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator.
    Blasenbauer D; Huber F; Mühl J; Fellner J; Lederer J
    Waste Manag; 2023 Apr; 161():142-155. PubMed ID: 36878041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.