These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38787267)

  • 1. Label-Free Detection of African Swine Fever and Classical Swine Fever in the Point-of-Care Setting Using Photonic Integrated Circuits Integrated in a Microfluidic Device.
    Manessis G; Frant M; Podgórska K; Gal-Cisoń A; Łyjak M; Urbaniak K; Woźniakowski G; Denes L; Balka G; Nannucci L; Griol A; Peransi S; Basdagianni Z; Mourouzis C; Giusti A; Bossis I
    Pathogens; 2024 May; 13(5):. PubMed ID: 38787267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Point-of-Care and Label-Free Detection of Porcine Reproductive and Respiratory Syndrome and Swine Influenza Viruses Using a Microfluidic Device with Photonic Integrated Circuits.
    Manessis G; Frant M; Wozniakowski G; Nannucci L; Benedetti M; Denes L; Gyula B; Gelasakis AI; Squires C; Recuero S; Sanchez C; Griol A; Giusti A; Bossis I
    Viruses; 2022 May; 14(5):. PubMed ID: 35632730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Microfluidics, Photonic Integrated Circuits and Data Acquisition and Analysis Methods in a Single Platform for the Detection of Swine Viral Diseases.
    Manessis G; Mourouzis C; Griol A; Zurita-Herranz D; Peransi S; Sanchez C; Giusti A; Gelasakis AI; Bossis I
    Animals (Basel); 2021 Nov; 11(11):. PubMed ID: 34827925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated and integrated multiplex detection of high consequence livestock viral genomes on a microfluidic platform.
    Lung O; Fisher M; Erickson A; Nfon C; Ambagala A
    Transbound Emerg Dis; 2019 Jan; 66(1):144-155. PubMed ID: 30103262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a duplex lateral flow assay for simultaneous detection of antibodies against African and Classical swine fever viruses.
    Sastre P; Pérez T; Costa S; Yang X; Räber A; Blome S; Goller KV; Gallardo C; Tapia I; García J; Sanz A; Rueda P
    J Vet Diagn Invest; 2016 Sep; 28(5):543-9. PubMed ID: 27400954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic Label-Free Biosensors for Fast and Multiplex Detection of Swine Viral Diseases.
    Gómez-Gómez M; Sánchez C; Peransi S; Zurita D; Bellieres L; Recuero S; Rodrigo M; Simón S; Camarca A; Capo A; Staiano M; Varriale A; D'Auria S; Manessis G; Gelasakis AI; Bossis I; Balka G; Dénes L; Frant M; Nannucci L; Bonasso M; Giusti A; Griol A
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Isothermal Molecular Point of Care Testing for African Swine Fever Virus Using Recombinase-Aided Amplification and Lateral Flow Assay Without the Need to Extract Nucleic Acids in Blood.
    Zhang Y; Li Q; Guo J; Li D; Wang L; Wang X; Xing G; Deng R; Zhang G
    Front Cell Infect Microbiol; 2021; 11():633763. PubMed ID: 33816338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of a Direct PCR Assay for Simultaneous Differential Diagnosis of African Swine Fever and Classical Swine Fever Using Crude Tissue Samples.
    Nishi T; Okadera K; Fukai K; Yoshizaki M; Nakasuji A; Yoneyama S; Kokuho T
    Viruses; 2022 Feb; 14(3):. PubMed ID: 35336904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly sensitive and specific gel-based multiplex RT-PCR assay for the simultaneous and differential diagnosis of African swine fever and Classical swine fever in clinical samples.
    Agüero M; Fernández J; Romero LJ; Zamora MJ; Sánchez C; Belák S; Arias M; Sánchez-Vizcaíno JM
    Vet Res; 2004; 35(5):551-63. PubMed ID: 15369658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of African swine fever, classical swine fever, and foot-and-mouth disease viruses in swine oral fluids by multiplex reverse transcription real-time polymerase chain reaction.
    Grau FR; Schroeder ME; Mulhern EL; McIntosh MT; Bounpheng MA
    J Vet Diagn Invest; 2015 Mar; 27(2):140-9. PubMed ID: 25776540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point-of-Care Testing for Sensitive Detection of the African Swine Fever Virus Genome.
    Elnagar A; Blome S; Beer M; Hoffmann B
    Viruses; 2022 Dec; 14(12):. PubMed ID: 36560831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of Classical Swine Fever Virus Virulent and Vaccine Strains by CRISPR/Cas13a.
    Zhang Y; Li Q; Wang R; Wang L; Wang X; Luo J; Xing G; Zheng G; Wan B; Guo J; Zhang G
    Microbiol Spectr; 2022 Oct; 10(5):e0089122. PubMed ID: 36173294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-Clinical Evaluation of a Real-Time PCR Assay on a Portable Instrument as a Possible Field Diagnostic Tool: Experiences from the Testing of Clinical Samples for African and Classical Swine Fever Viruses.
    Liu L; Luo Y; Accensi F; Ganges L; Rodríguez F; Shan H; Ståhl K; Qiu HJ; Belák S
    Transbound Emerg Dis; 2017 Oct; 64(5):e31-e35. PubMed ID: 27311689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever?
    Pakotiprapha D; Kuhaudomlarp S; Tinikul R; Chanarat S
    Viruses; 2023 Sep; 15(9):. PubMed ID: 37766331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Step Rapid and Sensitive ASFV p30 Antibody Detection via Nanoplasmonic Biosensors.
    Zhao Y; Li R; Lv C; Zhang Y; Zhou H; Xia X; Yu S; Wang Y; Huang L; Zhang Q; Liu GL; Jin M
    Microbiol Spectr; 2022 Dec; 10(6):e0234322. PubMed ID: 36314937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral flow assays for the detection of African swine fever virus antigen are not fit for field diagnosis of wild boar carcasses.
    Deutschmann P; Pikalo J; Beer M; Blome S
    Transbound Emerg Dis; 2022 Jul; 69(4):2344-2348. PubMed ID: 34312995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the diagnostic accuracy of an affordable rapid diagnostic test for African Swine Fever antigen detection in Lao People's Democratic Republic.
    Matsumoto N; Siengsanan-Lamont J; Gleeson LJ; Douangngeun B; Theppangna W; Khounsy S; Phommachanh P; Halasa T; Bush RD; Blacksell SD
    J Virol Methods; 2020 Dec; 286():113975. PubMed ID: 32956709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of oral fluid as an aggregate sample for early detection of African swine fever virus using four independent pen-based experimental studies.
    Goonewardene KB; Chung CJ; Goolia M; Blakemore L; Fabian A; Mohamed F; Nfon C; Clavijo A; Dodd KA; Ambagala A
    Transbound Emerg Dis; 2021 Sep; 68(5):2867-2877. PubMed ID: 34075717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swift and Reliable "Easy Lab" Methods for the Sensitive Molecular Detection of African Swine Fever Virus.
    Elnagar A; Pikalo J; Beer M; Blome S; Hoffmann B
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33669073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulated Isothermal Reverse Transcriptase PCR (iiRT-PCR) for Rapid and Sensitive Detection of Classical Swine Fever Virus.
    Lung O; Pasick J; Fisher M; Buchanan C; Erickson A; Ambagala A
    Transbound Emerg Dis; 2016 Oct; 63(5):e395-402. PubMed ID: 25644051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.