These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38787289)

  • 1. Constructing and Evaluating Machine-Learned Interatomic Potentials for Li-Based Disordered Rocksalts.
    Choyal V; Sagar N; Sai Gautam G
    J Chem Theory Comput; 2024 Jun; 20(11):4844-4856. PubMed ID: 38787289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces.
    Focassio B; M Freitas LP; Schleder GR
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38990833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ænet-PyTorch: A GPU-supported implementation for machine learning atomic potentials training.
    López-Zorrilla J; Aretxabaleta XM; Yeu IW; Etxebarria I; Manzano H; Artrith N
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37096855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transferability and Accuracy of Ionic Liquid Simulations with Equivariant Machine Learning Interatomic Potentials.
    Goodwin ZAH; Wenny MB; Yang JH; Cepellotti A; Ding J; Bystrom K; Duschatko BR; Johansson A; Sun L; Batzner S; Musaelian A; Mason JA; Kozinsky B; Molinari N
    J Phys Chem Lett; 2024 Jul; ():7539-7547. PubMed ID: 39023916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferable Water Potentials Using Equivariant Neural Networks.
    Maxson T; Szilvási T
    J Phys Chem Lett; 2024 Apr; 15(14):3740-3747. PubMed ID: 38547514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
    Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP
    J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of P3-Type Layered Oxides as K-Ion Battery Cathodes.
    Jha PK; Totade SN; Barpanda P; Sai Gautam G
    Inorg Chem; 2023 Sep; 62(37):14971-14979. PubMed ID: 37677129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking structural evolution methods for training of machine learned interatomic potentials.
    Waters MJ; Rondinelli JM
    J Phys Condens Matter; 2022 Jul; 34(38):. PubMed ID: 35797983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures.
    Fujikake S; Deringer VL; Lee TH; Krynski M; Elliott SR; Csányi G
    J Chem Phys; 2018 Jun; 148(24):241714. PubMed ID: 29960342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence.
    Zubatiuk T; Isayev O
    Acc Chem Res; 2021 Apr; 54(7):1575-1585. PubMed ID: 33715355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials.
    Mortazavi B; Zhuang X; Rabczuk T; Shapeev AV
    Mater Horiz; 2023 Jun; 10(6):1956-1968. PubMed ID: 37014053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linearized machine-learning interatomic potentials for non-magnetic elemental metals: Limitation of pairwise descriptors and trend of predictive power.
    Takahashi A; Seko A; Tanaka I
    J Chem Phys; 2018 Jun; 148(23):234106. PubMed ID: 29935515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Li
    Zhou S; Sun Y; Gao T; Liao J; Zhao S; Cao G
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202311930. PubMed ID: 37665223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Prediction of Voltage of Battery Electrode Materials Using Attention-Based Graph Neural Networks.
    Louis SY; Siriwardane EMD; Joshi RP; Omee SS; Kumar N; Hu J
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the accuracy of the SNAP interatomic potential form.
    Wood MA; Thompson AP
    J Chem Phys; 2018 Jun; 148(24):241721. PubMed ID: 29960331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Interatomic Potentials and Long-Range Physics.
    Anstine DM; Isayev O
    J Phys Chem A; 2023 Mar; 127(11):2417-2431. PubMed ID: 36802360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal properties of single-layer MoS
    Marmolejo-Tejada JM; Mosquera MA
    Chem Commun (Camb); 2022 Jun; 58(49):6902-6905. PubMed ID: 35639424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries.
    Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Δ
    Zhao Q; Anstine DM; Isayev O; Savoie BM
    Chem Sci; 2023 Nov; 14(46):13392-13401. PubMed ID: 38033903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes.
    Butler PWV; Hafizi R; Day GM
    J Phys Chem A; 2024 Feb; 128(5):945-957. PubMed ID: 38277275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.