These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 38787371)

  • 1. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution.
    Li B; Zhang W; Guo C; Xu H; Li L; Fang M; Hu Y; Zhang X; Yao X; Tang M; Liu K; Zhao X; Lin J; Cheng L; Chen F; Xue T; Qu K
    Nat Methods; 2022 Jun; 19(6):662-670. PubMed ID: 35577954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data.
    Yan L; Sun X
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36515467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.
    Ding J; Li L; Lu Q; Venegas J; Wang Y; Wu L; Jin W; Wen H; Liu R; Tang W; Dai X; Li Z; Zuo W; Chang Y; Lei YL; Shang L; Danaher P; Xie Y; Tang J
    J Comput Biol; 2024 Sep; 31(9):871-885. PubMed ID: 39117342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics.
    Swain AK; Pandit V; Sharma J; Yadav P
    Commun Biol; 2024 May; 7(1):639. PubMed ID: 38796505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks.
    Li Y; Luo Y
    Genome Biol; 2024 Aug; 25(1):206. PubMed ID: 39103939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating multiple variability in spatially resolved transcriptomics with scCube.
    Qian J; Bao H; Shao X; Fang Y; Liao J; Chen Z; Li C; Guo W; Hu Y; Li A; Yao Y; Fan X; Cheng Y
    Nat Commun; 2024 Jun; 15(1):5021. PubMed ID: 38866768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous pseudobulk simulation enables realistic benchmarking of cell-type deconvolution methods.
    Hu M; Chikina M
    Genome Biol; 2024 Jul; 25(1):169. PubMed ID: 38956606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking of cell type deconvolution pipelines for transcriptomics data.
    Avila Cobos F; Alquicira-Hernandez J; Powell JE; Mestdagh P; De Preter K
    Nat Commun; 2020 Nov; 11(1):5650. PubMed ID: 33159064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive comparison on cell-type composition inference for spatial transcriptomics data.
    Chen J; Liu W; Luo T; Yu Z; Jiang M; Wen J; Gupta GP; Giusti P; Zhu H; Yang Y; Li Y
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35753702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network.
    Yang W; Wang P; Xu S; Wang T; Luo M; Cai Y; Xu C; Xue G; Que J; Ding Q; Jin X; Yang Y; Pang F; Pang B; Lin Y; Nie H; Xu Z; Ji Y; Jiang Q
    Nat Commun; 2024 Aug; 15(1):7101. PubMed ID: 39155292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic comparison of sequencing-based spatial transcriptomic methods.
    You Y; Fu Y; Li L; Zhang Z; Jia S; Lu S; Ren W; Liu Y; Xu Y; Liu X; Jiang F; Peng G; Sampath Kumar A; Ritchie ME; Liu X; Tian L
    Nat Methods; 2024 Sep; 21(9):1743-1754. PubMed ID: 38965443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic evaluation with practical guidelines for single-cell and spatially resolved transcriptomics data simulation under multiple scenarios.
    Duo H; Li Y; Lan Y; Tao J; Yang Q; Xiao Y; Sun J; Li L; Nie X; Zhang X; Liang G; Liu M; Hao Y; Li B
    Genome Biol; 2024 Jun; 25(1):145. PubMed ID: 38831386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics.
    Li H; Zhou J; Li Z; Chen S; Liao X; Zhang B; Zhang R; Wang Y; Sun S; Gao X
    Nat Commun; 2023 Mar; 14(1):1548. PubMed ID: 36941264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially informed cell-type deconvolution for spatial transcriptomics.
    Ma Y; Zhou X
    Nat Biotechnol; 2022 Sep; 40(9):1349-1359. PubMed ID: 35501392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourteen years of cellular deconvolution: methodology, applications, technical evaluationĀ and outstanding challenges.
    Nguyen H; Nguyen H; Tran D; Draghici S; Nguyen T
    Nucleic Acids Res; 2024 May; 52(9):4761-4783. PubMed ID: 38619038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve.
    Zhou Z; Zhong Y; Zhang Z; Ren X
    Nat Commun; 2023 Dec; 14(1):7930. PubMed ID: 38040768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking mapping algorithms for cell-type annotating in mouse brain by integrating single-nucleus RNA-seq and Stereo-seq data.
    Tao Q; Xu Y; He Y; Luo T; Li X; Han L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38796691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.